Suppr超能文献

心脏电影图像的精确自动分析。

Accurate automatic analysis of cardiac cine images.

机构信息

BioImaging laboratory, Bioengineering Department, University of Louisville, Louisville, KY 40292, USA.

出版信息

IEEE Trans Biomed Eng. 2012 Feb;59(2):445-55. doi: 10.1109/TBME.2011.2174235. Epub 2011 Oct 31.

Abstract

Acquisition of noncontrast agent cine cardiac magnetic resonance (CMR) gated images through the cardiac cycle is, at present, a well-established part of examining cardiac global function. However, regional quantification is less well established. We propose a new automated framework for analyzing the wall thickness and thickening function on these images that consists of three main steps. First, inner and outer wall borders are segmented from their surrounding tissues with a geometric deformable model guided by a special stochastic speed relationship. The latter accounts for Markov-Gibbs shape and appearance models of the object-of-interest and its background. In the second step, point-to-point correspondences between the inner and outer borders are found by solving the Laplace equation and provide initial estimates of the local wall thickness and the thickening function index. Finally, the effects of the segmentation error is reduced and a continuity analysis of the LV wall thickening is performed through iterative energy minimization using a generalized Gauss-Markov random field (GGMRF) image model. The framework was evaluated on 26 datasets from clinical cine CMR images that have been collected from patients with eleven independent studies, with chronic ischemic heart disease and heart damage. The performance evaluation of the proposed segmentation approach, based on the receiver operating characteristic (ROC) and Dice similarity coefficients (DSC) between manually drawn and automatically segmented contours, confirmed a high robustness and accuracy of the proposed segmentation approach. Furthermore, the Bland-Altman plot is used to assess the limit of agreement of our measurements of the global function parameters compared to the ground truth. Importantly, comparative results on the publicly available database (MICCAI 2009 Cardiac MR Left Ventricle Segmentation) demonstrated a superior performance of the proposed segmentation approach over published methods.

摘要

目前,通过心脏周期获取非对比剂心脏磁共振(CMR)门控图像是检查心脏整体功能的成熟方法。然而,区域性定量分析的方法还不够完善。我们提出了一种新的自动分析方法,用于分析这些图像上的壁厚度和增厚功能,该方法由三个主要步骤组成。首先,使用几何变形模型,通过特殊的随机速度关系引导,将内外壁边界从周围组织中分割出来。后者考虑了目标及其背景的马尔可夫-吉布斯形状和外观模型。在第二步中,通过求解拉普拉斯方程找到内外边界之间的点对点对应关系,并提供局部壁厚度和增厚功能指数的初始估计值。最后,通过使用广义高斯-马尔可夫随机场(GGMRF)图像模型进行迭代能量最小化,减少分割误差的影响,并对 LV 壁增厚进行连续性分析。该框架在 26 个来自 11 个独立研究的临床 CMR 图像数据集上进行了评估,这些数据集来自患有慢性缺血性心脏病和心脏损伤的患者。基于手动绘制和自动分割轮廓之间的接收者操作特性(ROC)和骰子相似系数(DSC)对所提出的分割方法进行性能评估,确认了该分割方法具有很高的鲁棒性和准确性。此外,使用 Bland-Altman 图评估我们的全局功能参数测量与真实值之间的一致性限。重要的是,在公开数据库(MICCAI 2009 心脏磁共振左心室分割)上的比较结果表明,所提出的分割方法优于已发表的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验