Center for Biomedical Imaging and Bioinformatics, Key Laboratory of Education Ministry for Image Processing and Intelligence Control, School of Computer Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, Hubei, China.
Acad Radiol. 2012 Jun;19(6):723-31. doi: 10.1016/j.acra.2012.02.011. Epub 2012 Apr 1.
Segmentation of the left ventricle (LV) is very important in the assessment of cardiac functional parameters. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic LV segmentation on short-axis cardiac magnetic resonance images (MRI).
The database used in this study consists of 45 cases obtained from the Sunnybrook Health Sciences Centre. The 45 cases contain 12 ischemic heart failures, 12 non-ischemic heart failures, 12 LV hypertrophies, and 9 normal cases. Three key techniques are developed in this segmentation algorithm: 1) topological stable-state thresholding method is proposed to refine the endocardial contour, 2) an edge map with non-maxima gradient suppression approach, and 3) a region-restricted technique that is proposed to improve the dynamic programming to derive the epicardial boundary.
The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epicardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2 mm, and the overlapping dice metric is about 0.91. The regression and determination coefficient for the experts and our proposed method on the ejection fraction is 1.05 and 0.9048, respectively; they are 0.98 and 0.8221 for LV mass.
An automatic method using topological stable-state thresholding and region restricted dynamic programming has been proposed to segment left ventricle in short-axis cardiac MRI. Evaluation results indicate that the proposed segmentation method can improve the accuracy and robust of left ventricle segmentation. The proposed segmentation approach shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.
左心室(LV)的分割在评估心脏功能参数方面非常重要。本研究旨在开发一种新的、稳健的算法,以提高短轴心脏磁共振图像(MRI)上自动 LV 分割的准确性。
本研究使用的数据库来自 Sunnybrook 健康科学中心,包含 45 例病例,其中包括 12 例缺血性心力衰竭、12 例非缺血性心力衰竭、12 例 LV 肥厚和 9 例正常病例。该分割算法中开发了 3 项关键技术:1)提出拓扑稳定状态阈值法细化心内膜轮廓,2)采用非最大梯度抑制的边缘图,3)提出区域限制技术改进动态规划以得出心外膜边界。
在 45 例数据集的验证实验中,我们的结果在心内膜和心外膜轮廓的准确性方面,良好轮廓的百分比约为 91%,平均垂直距离约为 2 毫米,重叠骰子度量值约为 0.91。专家和我们提出的方法在射血分数上的回归和确定系数分别为 1.05 和 0.9048;在 LV 质量上分别为 0.98 和 0.8221。
提出了一种使用拓扑稳定状态阈值和区域限制动态规划的自动方法来分割短轴心脏 MRI 中的左心室。评估结果表明,所提出的分割方法可以提高左心室分割的准确性和稳健性。所提出的分割方法表现出更好的性能,在提高心血管疾病计算机辅助诊断系统的准确性方面具有很大的潜力。