Kuwada Nathan J, Zuckermann Martin J, Bromley Elizabeth H C, Sessions Richard B, Curmi Paul M G, Forde Nancy R, Woolfson Derek N, Linke Heiner
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031922. doi: 10.1103/PhysRevE.84.031922. Epub 2011 Sep 21.
The Tumbleweed (TW) is a concept for an artificial, tri-pedal, protein-based motor designed to move unidirectionally along a linear track by a diffusive tumbling motion. Artificial motors offer the unique opportunity to explore how motor performance depends on design details in a way that is open to experimental investigation. Prior studies have shown that TW's ability to complete many successive steps can be critically dependent on the motor's diffusional step time. Here, we present a simulation study targeted at determining how to minimize the diffusional step time of the TW motor as a function of two particular design choices: nonspecific motor-track interactions and molecular flexibility. We determine an optimal nonspecific interaction strength and establish a set of criteria for optimal molecular flexibility as a function of the nonspecific interaction. We discuss our results in the context of similarities to biological, linear stepping diffusive molecular motors with the aim of identifying general engineering principles for protein motors.
风滚草(TW)是一种人工设计的、基于蛋白质的三足马达概念,旨在通过扩散翻滚运动沿线性轨道单向移动。人工马达提供了独特的机会,以一种便于实验研究的方式探索马达性能如何依赖于设计细节。先前的研究表明,TW完成许多连续步骤的能力可能严重依赖于马达的扩散步长时间。在此,我们开展了一项模拟研究,旨在确定如何根据两个特定的设计选择(非特异性马达-轨道相互作用和分子柔韧性)来最小化TW马达的扩散步长时间。我们确定了最佳的非特异性相互作用强度,并建立了一组作为非特异性相互作用函数的最佳分子柔韧性标准。我们在与生物线性步进扩散分子马达的相似性背景下讨论我们的结果,目的是确定蛋白质马达的一般工程原理。