USC Norris Comprehensive Cancer Center, Departments of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, and Biological Sciences, Section of Molecular and Computational Biology, Los Angeles, California, USA.
Mol Cell Biol. 2012 Jan;32(2):365-75. doi: 10.1128/MCB.06187-11. Epub 2011 Nov 7.
During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.
在 V(D)J 重组过程中,RAG 靶向正确的位点与非靶位点依赖于 DNA 序列特征和染色质标记。使用第一个高度活跃的全长纯化 RAG1/RAG2 复合物进行的动力学分析现在使我们能够定义该复合物的重要催化特征。我们发现,缺口的总速率,但不是发夹形成,对于在人类 T 细胞淋巴瘤中区分正确(最佳)与非靶(次优)位点至关重要,我们表明 RAG2 的 C 末端部分对此是必需的。这种类型的动力学分析允许我们仅分析催化活性的 RAG 复合物,与所有其他方法相反,所有其他方法不可避免地与非活性 RAG 复合物混合而变得复杂。此外,我们可以区分任何酶催化的两个主要特征:结合常数(K(D))和催化周转率,k(cat)。在七聚体质量的最小基本阈值之外,进一步的次优七聚体偏差主要降低缺口的催化速率常数 k(cat)。非最优的九聚体不仅降低了 RAG 复合物与重组位点的结合(K(D)),而且还降低了催化速率常数,这与催化过程中 RAG 复合物与底物之间的紧密相互作用一致。这些特征解释了 RAG 生理学和病理生理学的许多方面。