Suppr超能文献

RAG 在重组位点与人类淋巴瘤的脱靶位点之间区分的机制基础。

Mechanistic basis for RAG discrimination between recombination sites and the off-target sites of human lymphomas.

机构信息

USC Norris Comprehensive Cancer Center, Departments of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, and Biological Sciences, Section of Molecular and Computational Biology, Los Angeles, California, USA.

出版信息

Mol Cell Biol. 2012 Jan;32(2):365-75. doi: 10.1128/MCB.06187-11. Epub 2011 Nov 7.

Abstract

During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.

摘要

在 V(D)J 重组过程中,RAG 靶向正确的位点与非靶位点依赖于 DNA 序列特征和染色质标记。使用第一个高度活跃的全长纯化 RAG1/RAG2 复合物进行的动力学分析现在使我们能够定义该复合物的重要催化特征。我们发现,缺口的总速率,但不是发夹形成,对于在人类 T 细胞淋巴瘤中区分正确(最佳)与非靶(次优)位点至关重要,我们表明 RAG2 的 C 末端部分对此是必需的。这种类型的动力学分析允许我们仅分析催化活性的 RAG 复合物,与所有其他方法相反,所有其他方法不可避免地与非活性 RAG 复合物混合而变得复杂。此外,我们可以区分任何酶催化的两个主要特征:结合常数(K(D))和催化周转率,k(cat)。在七聚体质量的最小基本阈值之外,进一步的次优七聚体偏差主要降低缺口的催化速率常数 k(cat)。非最优的九聚体不仅降低了 RAG 复合物与重组位点的结合(K(D)),而且还降低了催化速率常数,这与催化过程中 RAG 复合物与底物之间的紧密相互作用一致。这些特征解释了 RAG 生理学和病理生理学的许多方面。

相似文献

3
Real-time analysis of RAG complex activity in V(D)J recombination.V(D)J重组中RAG复合体活性的实时分析。
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11853-11858. doi: 10.1073/pnas.1606721113. Epub 2016 Oct 4.
5
RAG Represents a Widespread Threat to the Lymphocyte Genome.RAG对淋巴细胞基因组构成广泛威胁。
Cell. 2015 Aug 13;162(4):751-65. doi: 10.1016/j.cell.2015.07.009. Epub 2015 Jul 30.

引用本文的文献

7
Histone methylation and V(D)J recombination.组蛋白甲基化与V(D)J重组。
Int J Hematol. 2014 Sep;100(3):230-7. doi: 10.1007/s12185-014-1637-4. Epub 2014 Jul 25.
8
Modeling of the RAG reaction mechanism.RAG反应机制的建模。
Cell Rep. 2014 Apr 24;7(2):307-315. doi: 10.1016/j.celrep.2014.03.005. Epub 2014 Apr 3.

本文引用的文献

1
V(D)J recombination: mechanisms of initiation.V(D)J 重组:起始机制。
Annu Rev Genet. 2011;45:167-202. doi: 10.1146/annurev-genet-110410-132552. Epub 2011 Aug 19.
2
Moving DNA around: DNA transposition and retroviral integration.DNA 的转位:DNA 转座与逆转录病毒整合。
Curr Opin Struct Biol. 2011 Jun;21(3):370-8. doi: 10.1016/j.sbi.2011.03.004. Epub 2011 Mar 24.
3
Recombination centres and the orchestration of V(D)J recombination.重组中心与 V(D)J 重组的调控。
Nat Rev Immunol. 2011 Apr;11(4):251-63. doi: 10.1038/nri2941. Epub 2011 Mar 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验