Stent G S, Thompson W J, Calabrese R L
Physiol Rev. 1979 Jan;59(1):101-36. doi: 10.1152/physrev.1979.59.1.101.
The heartbeat of the leech Hirudo consists of the contractile rhythm of the circular muscles in the wall of a bilateral pair of celomic sinuses, the heart tubes, that run the length of the leech body. The constriction cycles of the segmental heart-tube sections are coordinated so that on one body side they constrict in a rear-to-front progression (peristalsis), while on the other side they constrict nearly in concert (nonperistalsis). Spontaneous right-left reciprocal transitions between peristaltic and nonperistaltic coordination modes occur every few dozen heartbeat cycles. The constriction of each segmental heart-tube section is controlled via excitatory synapses by a rhythmically active heart motor neuron, or HE cell, of which 17 bilateral pairs are iterated in segmental ganglia of the ventral nerve cord. The activity rhythm of the HE cell ensemble is in turn controlled via inhibitory synapses by a rhythmically active heart interneuron, the HN cell, of which seven bilateral pairs are iterated in the rostral segmental ganglia. The HN heart interneuron owes its activity rhythm to an endogenous polarization cycle, and the cycles of all members of the HN cell ensemble are locked into an appropriate phase relation thanks to their mutual interconnection via excitatory and inhibitory synaptic connections. The observed activity pattern and identified synaptic connections of HE cells and HN cells can account not only for the generation of the two bilaterally asymmetric heartbeat coordination modes but also for the right-left coordination mode transitions. In contrast to the heartbeat of Hirudo, the beat of the single-chambered heart of the lobsters Panulirus and Homarus is controlled by a set of nine rhythmically active neurons that make up the cardiac ganglion. Of these, five larger cells are heart motor neurons that innervate the heart muscle fibers via excitatory synapses. The remaining four smaller neurons of the cardiac ganglion are interneurons that provide excitatory input to each other and to the heart motor neurons. Although all the neurons of the cardiac ganglion appear capable of producing their own endogenous polarization rhythm, it is currently believed that one of the interneurons acts as a pacemaker for the whole ensemble of interneurons and motor neurons. The beat of the two-chambered heart of the marine snail Aplysia is generated by yet an entirely different mechanism. Here, the basic contractile rhythm of the heart is due to an endogenous polarization cycle of the heart muscle fibers. That myogenic rhythm is controlled and modulated by a set of cardiovascular motor neurons located in the abdominal ganglion, some of which make excitatory and others of which make inhibitory connections with the heart muscle fibers. The activity of these cardiovascular motor neurons is controlled by three types of heart interneurons via both inhibitory and excitatory connections. The interneurons are in turn interconnected in a manner that prevents the simultaneous activation of antagonistic cardiac motor acts...
水蛭(医蛭属)的心跳由一对双侧体腔窦壁上环形肌肉的收缩节律构成,这对体腔窦即心脏管,沿水蛭身体全长延伸。节段性心脏管各部分的收缩周期相互协调,使得在身体一侧,它们以从后向前的顺序收缩(蠕动),而在另一侧,它们几乎同时收缩(非蠕动)。每隔几十个心跳周期,蠕动和非蠕动协调模式之间就会自发地发生左右相互转换。每个节段性心脏管部分的收缩是由一个有节律活动的心脏运动神经元(即HE细胞)通过兴奋性突触控制的,在腹神经索的节段神经节中,有17对双侧的这种神经元重复排列。HE细胞群的活动节律又由一个有节律活动的心脏中间神经元(HN细胞)通过抑制性突触控制,在头端节段神经节中有7对双侧的这种神经元重复排列。HN心脏中间神经元的活动节律源于一个内源性极化周期,并且由于HN细胞群所有成员通过兴奋性和抑制性突触连接相互连接,它们的周期被锁定在适当的相位关系中。观察到的HE细胞和HN细胞的活动模式以及确定的突触连接不仅可以解释两种双侧不对称心跳协调模式的产生,还可以解释左右协调模式的转换。与水蛭的心跳不同,龙虾(龙虾属和螯龙虾属)单腔心脏的搏动由一组九个有节律活动的神经元控制,这些神经元构成了心脏神经节。其中,五个较大的细胞是心脏运动神经元,它们通过兴奋性突触支配心肌纤维。心脏神经节中其余四个较小的神经元是中间神经元,它们相互之间以及向心脏运动神经元提供兴奋性输入。尽管心脏神经节的所有神经元似乎都能够产生自己的内源性极化节律,但目前认为其中一个中间神经元充当整个中间神经元和运动神经元群体的起搏器。海兔双腔心脏的搏动是由一种完全不同的机制产生的。在这里,心脏的基本收缩节律归因于心肌纤维的内源性极化周期。这种肌源性节律由位于腹神经节的一组心血管运动神经元控制和调节,其中一些神经元与心肌纤维形成兴奋性连接,另一些则形成抑制性连接。这些心血管运动神经元的活动通过抑制性和兴奋性连接由三种类型的心脏中间神经元控制。这些中间神经元又以一种防止拮抗心脏运动行为同时激活的方式相互连接……