Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18887-92. doi: 10.1073/pnas.1115237108. Epub 2011 Nov 7.
We utilize 100 fs optical pulses to induce ultrafast disorder of 35- to 150-nm thick single Au(111) crystals and observe the subsequent structural evolution using 0.6-ps, 8.04-keV X-ray pulses. Monitoring the picosecond time-dependent modulation of the X-ray diffraction intensity, width, and shift, we have measured directly electron/phonon coupling, phonon/lattice interaction, and a histogram of the lattice disorder evolution, such as lattice breath due to a pressure wave propagating at sonic velocity, lattice melting, and recrystallization, including mosaic formation. Results of theoretical simulations agree and support the experimental data of the lattice/liquid phase transition process. These time-resolved X-ray diffraction data provide a detailed description of all the significant processes induced by ultrafast laser pulses impinging on thin metallic single crystals.
我们利用 100fs 的光脉冲诱导 35 到 150nm 厚的单层金(111)晶体的超快无序,并使用 0.6ps、8.04keV 的 X 射线脉冲观察随后的结构演化。通过监测皮秒时间相关的 X 射线衍射强度、宽度和位移的调制,我们直接测量了电子/声子耦合、声子/晶格相互作用以及晶格无序演化的直方图,例如由于声速传播的压力波引起的晶格呼吸、晶格熔化和再结晶,包括镶嵌结构的形成。理论模拟的结果与实验数据一致,支持晶格/液相转变过程。这些时间分辨的 X 射线衍射数据提供了对超快激光脉冲冲击薄金属单晶所引起的所有重要过程的详细描述。