Department of Neurosurgery, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA.
Technol Cancer Res Treat. 2011 Dec;10(6):561-74. doi: 10.1177/153303461101000606.
The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. 'GK simulator' software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
使用一致性指数来优化伽玛刀计划是很常见的,但它不能解决肿瘤和正常组织之间剂量的重要权衡问题。帕累托分析已经在其他应用中被用于此目的,但尚未用于伽玛刀(GK)计划。这项工作的目的是使用计算机模型表明,帕累托分析对于 GK 计划可能是可行的,可以确定剂量权衡。我们定义,如果 A 计划的处方等剂量体积覆盖更多的肿瘤但不覆盖更多的正常组织,或者 A 计划覆盖更少的正常组织但不覆盖更少的肿瘤,则 A 计划相对于 B 计划是帕累托优势。如果没有任何其他计划对其占主导地位,则计划是帕累托最优的。两个不同的帕累托最优计划代表了肿瘤和正常组织之间的不同剂量权衡,因为没有一个计划主导另一个计划。“GK 模拟器”软件计算了 GK 计划的剂量分布,并通过遗传算法重复调用以计算帕累托优势计划。在 17 次试验中,使用不同的射束组合测试了三种不规则的肿瘤形状。每次试验平均有 59 个帕累托优势计划/试验,标准偏差为 17 个(标准差)。不同的规划策略通过射束位置的巨大差异来识别,在 153 个坐标图中有 70 个(46%)显示差异为 5 毫米或更大。帕累托优势计划主导了其他附近的计划。帕累托优势计划代表了不同的剂量权衡,并且可以使用遗传算法系统地计算。使用这些方法可能可以自动识别非直观的规划策略。