Suppr超能文献

数据结构解释中信息粒度分配的优化:迈向粒度模糊聚类

An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering.

作者信息

Pedrycz Witold, Bargiela Andrzej

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):582-90. doi: 10.1109/TSMCB.2011.2170067. Epub 2011 Nov 3.

Abstract

Clustering forms one of the most visible conceptual and algorithmic framework of developing information granules. In spite of the algorithm being used, the representation of information granules-clusters is predominantly numeric (coming in the form of prototypes, partition matrices, dendrograms, etc.). In this paper, we consider a concept of granular prototypes that generalizes the numeric representation of the clusters and, in this way, helps capture more details about the data structure. By invoking the granulation-degranulation scheme, we design granular prototypes being reflective of the structure of data to a higher extent than the representation that is provided by their numeric counterparts (prototypes). The design is formulated as an optimization problem, which is guided by the coverage criterion, meaning that we maximize the number of data for which their granular realization includes the original data. The granularity of the prototypes themselves is treated as an important design asset; hence, its allocation to the individual prototypes is optimized so that the coverage criterion becomes maximized. With this regard, several schemes of optimal allocation of information granularity are investigated, where interval-valued prototypes are formed around the already produced numeric representatives. Experimental studies are provided in which the design of granular prototypes of interval format is discussed and characterized.

摘要

聚类构成了发展信息粒度最显著的概念和算法框架之一。无论使用何种算法,信息粒度——聚类的表示主要是数值形式(以原型、划分矩阵、树状图等形式出现)。在本文中,我们考虑粒度原型的概念,它推广了聚类的数值表示,从而有助于捕捉关于数据结构的更多细节。通过调用粒化 - 解粒化方案,我们设计的粒度原型比其数值对应物(原型)提供的表示更能反映数据的结构。该设计被表述为一个优化问题,它以覆盖准则为指导,这意味着我们要最大化那些其粒度实现包含原始数据的数据数量。原型本身的粒度被视为一项重要的设计资产;因此,对其在各个原型之间的分配进行优化,以使覆盖准则最大化。就此,研究了几种信息粒度的最优分配方案,其中区间值原型围绕已生成的数值代表形成。提供了实验研究,其中讨论并刻画了区间格式粒度原型的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验