Bargiela A, Pedrycz W
Dept. of Comput., Nottingham Trent Univ., UK.
IEEE Trans Syst Man Cybern B Cybern. 2003;33(1):96-112. doi: 10.1109/TSMCB.2003.808190.
This paper contributes to the conceptual and algorithmic framework of information granulation. We revisit the role of information granules that are relevant to several main classes of technical pursuits involving temporal and spatial granulation. A detailed algorithm of information granulation, regarded as an optimization problem reconciling two conflicting design criteria, namely, a specificity of information granules and their experimental relevance (coverage of numeric data), is provided in the paper. The resulting information granules are formalized in the language of set theory (interval analysis). The uniform treatment of data points and data intervals (sets) allows for a recursive application of the algorithm. We assess the quality of information granules through application of the fuzzy c-means (FCM) clustering algorithm. Numerical studies deal with two-dimensional (2D) synthetic data and experimental traffic data.
本文对信息粒化的概念和算法框架做出了贡献。我们重新审视了信息粒在涉及时间和空间粒化的几类主要技术追求中的作用。本文提供了一种详细的信息粒化算法,该算法被视为一个协调两个相互冲突的设计标准的优化问题,这两个标准分别是信息粒的特异性及其与实验的相关性(数值数据的覆盖范围)。由此产生的信息粒用集合论(区间分析)的语言进行形式化。对数据点和数据区间(集合)的统一处理使得该算法能够递归应用。我们通过应用模糊c均值(FCM)聚类算法来评估信息粒的质量。数值研究涉及二维(2D)合成数据和实验交通数据。