Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
Biochem Biophys Res Commun. 2011 Nov 25;415(3):509-14. doi: 10.1016/j.bbrc.2011.10.106. Epub 2011 Oct 29.
G protein coupled inward rectifier K(+) channels (GIRK) are activated by the G(βγ) subunits of G proteins upon activation of G protein coupled receptors (GPCRs). Receptor-stimulated GIRK currents are known to possess a curious property, termed "agonist-dependent relaxation," denoting a slow current increase upon stepping the membrane voltage from positive to negative potentials. Regulators of G protein signaling (RGS) proteins have earlier been implicated in this phenomenon since RGS coexpression was required for relaxation to be observed in heterologous expression systems. However, a recent study presented contrasting evidence that GIRK current relaxation reflects voltage sensitive agonist binding to the GPCR. The present study re-examined the role of RGS protein in agonist-dependent relaxation and found that RGS coexpression is not necessary for the relaxation phenomenon. However, RGS4 speeds up relaxation kinetics, allowing the phenomenon to be observed using shorter voltage steps. These findings resolve the controversy regarding the role of RGS protein vs. GPCR voltage sensitivity in mediating agonist-dependent relaxation of GIRK currents.
G 蛋白偶联内向整流钾 (GIRK) 通道在 G 蛋白偶联受体 (GPCR) 激活时被 G 蛋白的 Gβγ 亚基激活。已知受刺激的 GIRK 电流具有一种奇特的特性,称为“激动剂依赖性弛豫”,表示在将膜电压从正电位变为负电位时,电流缓慢增加。G 蛋白信号转导调节蛋白 (RGS) 蛋白早些时候与该现象有关,因为在异源表达系统中观察到弛豫时需要 RGS 共表达。然而,最近的一项研究提出了相反的证据,表明 GIRK 电流弛豫反映了电压敏感激动剂与 GPCR 的结合。本研究重新检查了 RGS 蛋白在激动剂依赖性弛豫中的作用,发现 RGS 共表达对于弛豫现象不是必需的。然而,RGS4 加速了弛豫动力学,使得使用较短的电压阶跃可以观察到该现象。这些发现解决了关于 RGS 蛋白与 GPCR 电压敏感性在介导 GIRK 电流的激动剂依赖性弛豫中的作用的争议。