Suppr超能文献

多项反应剖面模型的参数估计。

Parameter estimation of multiple item response profile model.

机构信息

College of Vanderbilt University, Nashville, Tennessee 37203-5721, USA.

出版信息

Br J Math Stat Psychol. 2012 Nov;65(3):438-66. doi: 10.1111/j.2044-8317.2011.02036.x. Epub 2011 Nov 10.

Abstract

Multiple item response profile (MIRP) models are models with crossed fixed and random effects. At least one between-person factor is crossed with at least one within-person factor, and the persons nested within the levels of the between-person factor are crossed with the items within levels of the within-person factor. Maximum likelihood estimation (MLE) of models for binary data with crossed random effects is challenging. This is because the marginal likelihood does not have a closed form, so that MLE requires numerical or Monte Carlo integration. In addition, the multidimensional structure of MIRPs makes the estimation complex. In this paper, three different estimation methods to meet these challenges are described: the Laplace approximation to the integrand; hierarchical Bayesian analysis, a simulation-based method; and an alternating imputation posterior with adaptive quadrature as the approximation to the integral. In addition, this paper discusses the advantages and disadvantages of these three estimation methods for MIRPs. The three algorithms are compared in a real data application and a simulation study was also done to compare their behaviour.

摘要

多项反应剖面(MIRP)模型是具有交叉固定和随机效应的模型。至少有一个个体间因素与至少一个个体内因素交叉,并且嵌套在个体间因素水平内的个体与个体内因素水平内的项目交叉。具有交叉随机效应的二项数据模型的最大似然估计(MLE)具有挑战性。这是因为边际似然没有封闭形式,因此 MLE 需要数值或蒙特卡罗积分。此外,MIRP 的多维结构使得估计变得复杂。本文描述了三种不同的估计方法来应对这些挑战:积分项的拉普拉斯逼近;层次贝叶斯分析,一种基于模拟的方法;以及具有自适应求积作为积分近似的交替插补后验。此外,本文还讨论了这三种用于 MIRP 的估计方法的优缺点。在实际数据应用中比较了这三种算法,并进行了模拟研究以比较它们的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验