Suppr超能文献

将功能反应时间效应纳入信号检测理论模型。

Incorporating Functional Response Time Effects into a Signal Detection Theory Model.

机构信息

Vanderbilt University, Nashville, USA.

The Ohio State University and KU Leuven, Columbus, USA.

出版信息

Psychometrika. 2023 Sep;88(3):1056-1086. doi: 10.1007/s11336-023-09906-9. Epub 2023 Mar 29.

Abstract

Signal detection theory (SDT; Tanner & Swets in Psychological Review 61:401-409, 1954) is a dominant modeling framework used for evaluating the accuracy of diagnostic systems that seek to distinguish signal from noise in psychology. Although the use of response time data in psychometric models has increased in recent years, the incorporation of response time data into SDT models remains a relatively underexplored approach to distinguishing signal from noise. Functional response time effects are hypothesized in SDT models, based on findings from other related psychometric models with response time data. In this study, an SDT model is extended to incorporate functional response time effects using smooth functions and to include all sources of variability in SDT model parameters across trials, participants, and items in the experimental data. The extended SDT model with smooth functions is formulated as a generalized linear mixed-effects model and implemented in the gamm4 R package. The extended model is illustrated using recognition memory data to understand how conversational language is remembered. Accuracy of parameter estimates and the importance of modeling variability in detecting the experimental condition effects and functional response time effects are shown in conditions similar to the empirical data set via a simulation study. In addition, the type 1 error rate of the test for a smooth function of response time is evaluated.

摘要

信号检测理论(SDT;Tanner 和 Swets 在《心理学评论》第 61 卷:401-409 页,1954 年)是一种用于评估诊断系统准确性的主导建模框架,该系统旨在区分心理学中的信号和噪声。尽管近年来在心理计量模型中使用反应时间数据的情况有所增加,但将反应时间数据纳入 SDT 模型仍然是一种相对未被充分探索的方法,用于区分信号和噪声。基于具有反应时间数据的其他相关心理计量模型的研究结果,SDT 模型中假设了功能反应时间效应。在这项研究中,使用平滑函数扩展了 SDT 模型,以纳入功能反应时间效应,并在实验数据中的试验、参与者和项目中包含 SDT 模型参数的所有来源的可变性。具有平滑函数的扩展 SDT 模型被制定为广义线性混合效应模型,并在 gamm4 R 包中实现。使用识别记忆数据扩展模型,以了解如何记住会话语言。通过模拟研究,在类似于经验数据集的条件下,展示了参数估计的准确性以及在检测实验条件效应和功能反应时间效应方面建模可变性的重要性。此外,还评估了响应时间平滑函数检验的第一类错误率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验