Suppr超能文献

通过内切葡糖神经酰胺酶相关蛋白 1(EGCrP1)对新型隐球菌中真菌特异性葡糖基神经酰胺进行质量控制。

Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1).

机构信息

Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.

出版信息

J Biol Chem. 2012 Jan 2;287(1):368-381. doi: 10.1074/jbc.M111.311340. Epub 2011 Nov 9.

Abstract

A fungus-specific glucosylceramide (GlcCer), which contains a unique sphingoid base possessing two double bonds and a methyl substitution, is essential for pathogenicity in fungi. Although the biosynthetic pathway of the GlcCer has been well elucidated, little is known about GlcCer catabolism because a GlcCer-degrading enzyme (glucocerebrosidase) has yet to be identified in fungi. We found a homologue of endoglycoceramidase tentatively designated endoglycoceramidase-related protein 1 (EGCrP1) in several fungal genomic databases. The recombinant EGCrP1 hydrolyzed GlcCer but not other glycosphingolipids, whereas endoglycoceramidase hydrolyzed oligosaccharide-linked glycosphingolipids but not GlcCer. Disruption of egcrp1 in Cryptococcus neoformans, a typical pathogenic fungus causing cryptococcosis, resulted in the accumulation of fungus-specific GlcCer and immature GlcCer that possess sphingoid bases without a methyl substitution concomitant with a dysfunction of polysaccharide capsule formation. These results indicated that EGCrP1 participates in the catabolism of GlcCer and especially functions to eliminate immature GlcCer in vivo that are generated as by-products due to the broad specificity of GlcCer synthase. We conclude that EGCrP1, a glucocerebrosidase identified for the first time in fungi, controls the quality of GlcCer by eliminating immature GlcCer incorrectly generated in C. neoformans, leading to accurate processing of fungus-specific GlcCer.

摘要

真菌特有的葡糖基神经酰胺(GlcCer)含有一个独特的神经酰胺碱基,具有两个双键和一个甲基取代基,对于真菌的致病性是必不可少的。尽管 GlcCer 的生物合成途径已经得到很好的阐明,但由于尚未在真菌中鉴定出 GlcCer 降解酶(葡糖脑苷脂酶),因此对 GlcCer 分解代谢知之甚少。我们在几个真菌基因组数据库中发现了一种内切葡糖神经酰胺酶的同源物,暂定名为内切葡糖神经酰胺酶相关蛋白 1(EGCrP1)。重组 EGCrP1 水解 GlcCer,但不水解其他糖脂,而内切葡糖脑苷脂酶水解糖链连接的糖脂,但不水解 GlcCer。在新型隐球菌(一种引起隐球菌病的典型致病性真菌)中敲除 egcrp1 导致真菌特异性 GlcCer 和缺乏甲基取代的不成熟 GlcCer 积累,同时多糖荚膜形成功能障碍。这些结果表明 EGCrP1 参与 GlcCer 的分解代谢,特别是在体内消除由于 GlcCer 合酶的广泛特异性而产生的作为副产物的不成熟 GlcCer。我们得出结论,EGCrP1 是首次在真菌中鉴定出的葡糖脑苷脂酶,通过消除新型隐球菌中错误生成的不成熟 GlcCer 来控制 GlcCer 的质量,从而导致真菌特异性 GlcCer 的准确加工。

相似文献

1
Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1).
J Biol Chem. 2012 Jan 2;287(1):368-381. doi: 10.1074/jbc.M111.311340. Epub 2011 Nov 9.
3
Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans.
Cell Microbiol. 2012 Apr;14(4):500-16. doi: 10.1111/j.1462-5822.2011.01735.x. Epub 2012 Jan 9.
5
Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.
PLoS One. 2016 Apr 15;11(4):e0153853. doi: 10.1371/journal.pone.0153853. eCollection 2016.
7
Fungal Glycolipid Hydrolase Inhibitors and Their Effect on Cryptococcus neoformans.
Chembiochem. 2017 Feb 1;18(3):284-290. doi: 10.1002/cbic.201600538. Epub 2017 Jan 3.
9
Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans.
Biochim Biophys Acta Biomembr. 2017 Nov;1859(11):2224-2233. doi: 10.1016/j.bbamem.2017.08.017. Epub 2017 Sep 1.
10
Functions and applications of glycolipid-hydrolyzing microbial glycosidases.
Biosci Biotechnol Biochem. 2022 Jul 22;86(8):974-984. doi: 10.1093/bbb/zbac089.

引用本文的文献

2
Sterylglucosides in Fungi.
J Fungi (Basel). 2022 Oct 26;8(11):1130. doi: 10.3390/jof8111130.
3
Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods.
Front Microbiol. 2021 Jul 22;12:690211. doi: 10.3389/fmicb.2021.690211. eCollection 2021.
4
A potential pathway for flippase-facilitated glucosylceramide catabolism in plants.
Plant Signal Behav. 2020 Oct 2;15(10):1783486. doi: 10.1080/15592324.2020.1783486. Epub 2020 Aug 28.
5
The GCD3 protein is a glucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides.
J Biol Chem. 2020 Jan 17;295(3):717-728. doi: 10.1074/jbc.RA119.011274. Epub 2019 Dec 8.
6
Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses.
J Lipid Res. 2018 Dec;59(12):2262-2276. doi: 10.1194/jlr.R086629. Epub 2018 Oct 2.
7
Peeling the onion: the outer layers of Cryptococcus neoformans.
Mem Inst Oswaldo Cruz. 2018;113(7):e180040. doi: 10.1590/0074-02760180040. Epub 2018 May 7.
9
Plasma membrane lipids and their role in fungal virulence.
Prog Lipid Res. 2016 Jan;61:63-72. doi: 10.1016/j.plipres.2015.11.003. Epub 2015 Dec 15.

本文引用的文献

1
Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris.
J Biol Chem. 2011 Apr 1;286(13):11401-14. doi: 10.1074/jbc.M110.193094. Epub 2011 Feb 8.
4
Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation.
Microbiology (Reading). 2010 Apr;156(Pt 4):1234-1243. doi: 10.1099/mic.0.033985-0. Epub 2009 Dec 17.
5
An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers.
Biochem Biophys Res Commun. 2009 Dec 18;390(3):983-8. doi: 10.1016/j.bbrc.2009.10.089. Epub 2009 Oct 21.
6
How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans.
Annu Rev Microbiol. 2009;63:223-47. doi: 10.1146/annurev.micro.62.081307.162753.
9
Disruption of the sphingolipid Delta8-desaturase gene causes a delay in morphological changes in Candida albicans.
Microbiology (Reading). 2008 Dec;154(Pt 12):3795-3803. doi: 10.1099/mic.0.2008/018788-0.
10
Heterologous expression and characterization of a beta-1,6-glucanase from Aspergillus fumigatus.
Appl Microbiol Biotechnol. 2009 Mar;82(4):663-9. doi: 10.1007/s00253-008-1780-z. Epub 2008 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验