Unit Fruit Science, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Dürnast 2, D-85354 Freising, Germany; E-Mail:
Int J Mol Sci. 2011;12(10):6834-55. doi: 10.3390/ijms12106834. Epub 2011 Oct 14.
Needle primordia of Tsuga canadensis (hemlock) arising from flank meristems of a shoot apex, form cell lineages consisting of four or eight cells. Within a recently established lineage there is striking uniformity in the pattern of nuclear flavanols. This fact points to an identical transcriptional expression of these flavanols during cell cycling. However two lineages, even if located close together within the same meristem, can be very different in the expression of both cell shape and nuclear flavanol pattern, indicating that epigenetic positional signals are operating in a collective specification of cell lineage development. There is a wide range of nuclear flavanol patterning from a mosaic-like distribution in an activated cell type to a homogenous appearance in silenced cell types. Single cells deriving from lineages are desynchronized because they underlie a signaling network at a higher tissue level which results in stronger epigenetic modifications of their nuclear flavanols. As an extreme case of epigenetic modulation, transient drought conditions caused a drastic reduction of nuclear flavanols. Upon treatment with sucrose or cytokinin, these nuclear flavanols could be fully restored. Analytical determination of the flavanols revealed 3.4 mg/g DW for newly sprouting needles and 19.6 mg/g DW for anthers during meiosis. The roughly 6-fold difference in flavanols is apparently a reflection of the highly diverging organogenetic processes. Collectively, the studies provide strong evidence for combinatorial interplay between cell fate and nuclear flavanols.
落基铁杉(铁杉)的针原基从芽尖的侧生分生组织产生,形成由四个或八个细胞组成的细胞谱系。在最近建立的谱系中,核黄烷醇的模式具有惊人的一致性。这一事实表明,在细胞循环过程中,这些黄烷醇的转录表达是相同的。然而,即使在同一分生组织内紧密相邻的两个谱系,在细胞形状和核黄烷醇模式的表达上也可能非常不同,这表明表观遗传位置信号在细胞谱系发育的集体规范中起作用。核黄烷醇的模式有广泛的变化范围,从激活细胞类型中的镶嵌样分布到沉默细胞类型中的均匀外观。源自谱系的单个细胞因处于更高组织水平的信号网络而不同步,这导致它们的核黄烷醇发生更强的表观遗传修饰。作为表观遗传调节的极端情况,短暂的干旱条件导致核黄烷醇急剧减少。用蔗糖或细胞分裂素处理后,这些核黄烷醇可以完全恢复。对黄烷醇的分析测定显示,新发芽的针叶中的含量为 3.4mg/gDW,减数分裂期间的花粉中的含量为 19.6mg/gDW。黄烷醇的差异约为 6 倍,显然反映了器官发生过程的高度差异。总的来说,这些研究为细胞命运和核黄烷醇之间的组合相互作用提供了有力的证据。