Suppr超能文献

四大生态系统中主要分类群生态知识广度的差异。

Differences among major taxa in the extent of ecological knowledge across four major ecosystems.

机构信息

Australian Institute of Marine Science, UWA Oceans Institute, Crawley, Australia.

出版信息

PLoS One. 2011;6(11):e26556. doi: 10.1371/journal.pone.0026556. Epub 2011 Nov 2.

Abstract

Existing knowledge shapes our understanding of ecosystems and is critical for ecosystem-based management of the world's natural resources. Typically this knowledge is biased among taxa, with some taxa far better studied than others, but the extent of this bias is poorly known. In conjunction with the publically available World Registry of Marine Species database (WoRMS) and one of the world's premier electronic scientific literature databases (Web of Science®), a text mining approach is used to examine the distribution of existing ecological knowledge among taxa in coral reef, mangrove, seagrass and kelp bed ecosystems. We found that for each of these ecosystems, most research has been limited to a few groups of organisms. While this bias clearly reflects the perceived importance of some taxa as commercially or ecologically valuable, the relative lack of research of other taxonomic groups highlights the problem that some key taxa and associated ecosystem processes they affect may be poorly understood or completely ignored. The approach outlined here could be applied to any type of ecosystem for analyzing previous research effort and identifying knowledge gaps in order to improve ecosystem-based conservation and management.

摘要

现有知识塑造了我们对生态系统的理解,对基于生态系统的世界自然资源管理至关重要。通常情况下,这种知识在分类群之间存在偏见,有些分类群的研究远远超过其他分类群,但这种偏见的程度知之甚少。本研究结合公开的世界海洋物种名录数据库(WoRMS)和世界上首屈一指的电子科学文献数据库之一(Web of Science®),采用文本挖掘方法来检查珊瑚礁、红树林、海草和巨藻床生态系统中现有生态知识在分类群中的分布情况。我们发现,对于这些生态系统中的每一个,大多数研究都局限于少数几个生物群。虽然这种偏见清楚地反映了一些分类群作为商业或生态价值的重要性,但对其他分类群的相对缺乏研究突显了一个问题,即一些关键的分类群及其相关的生态系统过程可能了解甚少或完全被忽视。这里概述的方法可以应用于任何类型的生态系统,以分析以前的研究工作并确定知识空白,从而改善基于生态系统的保护和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3917/3206803/7d41bbc76793/pone.0026556.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验