Suppr超能文献

复杂家系群体全基因组关联分析中线性混合模型的局部系谱。

Local genealogies in a linear mixed model for genome-wide association mapping in complex pedigreed populations.

机构信息

Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Tjele, Denmark.

出版信息

PLoS One. 2011;6(11):e27061. doi: 10.1371/journal.pone.0027061. Epub 2011 Nov 2.

Abstract

INTRODUCTION

The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both family-based and population-based samples, and can be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called 'GENMIX (genealogy based mixed model)' which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA.

SUBJECTS AND METHODS

We validated GENMIX using genotyping data of Danish Jersey cattle and simulated phenotype and compared to the MMA. We simulated scenarios for three levels of heritability (0.21, 0.34, and 0.64), seven levels of MAF (0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45) and five levels of QTL effect (0.1, 0.2, 0.5, 0.7 and 1.0 in phenotypic standard deviation unit). Each of these 105 possible combinations (3 h(2) x 7 MAF x 5 effects) of scenarios was replicated 25 times.

RESULTS

GENMIX provides a better ranking of markers close to the causative locus' location. GENMIX outperformed MMA when the QTL effect was small and the MAF at the QTL was low. In scenarios where MAF was high or the QTL affecting the trait had a large effect both GENMIX and MMA performed similarly.

CONCLUSION

In discovery studies, where high-ranking markers are identified and later examined in validation studies, we therefore expect GENMIX to enrich candidates brought to follow-up studies with true positives over false positives more than the MMA would.

摘要

简介

处理全基因组关联研究(GWAS)中样本之间多层次关系的最新方法是统一混合模型分析(MMA)。这种方法非常灵活,可以应用于基于家族和基于人群的样本,并且可以直接而严格地扩展到纳入其他影响因素。在这里,我们提出了一种补充方法,称为“GENMIX(基于系谱的混合模型)”,它结合了两种强大的 GWAS 方法的优势:基于系谱的单倍型分组和 MMA。

方法

我们使用丹麦泽西牛的基因分型数据验证了 GENMIX,并与 MMA 进行了比较。我们模拟了三种遗传力水平(0.21、0.34 和 0.64)、七种 MAF 水平(0.05、0.10、0.15、0.20、0.25、0.35 和 0.45)和五种 QTL 效应水平(0.1、0.2、0.5、0.7 和 1.0 表型标准差单位)的模拟表型和情景。这些情景的 105 种可能组合(3 h(2) x 7 MAF x 5 效应)中的每一种都复制了 25 次。

结果

GENMIX 提供了更接近因果基因座位置的标记的更好排名。当 QTL 效应较小时,且 QTL 处的 MAF 较低时,GENMIX 优于 MMA。在 MAF 较高或影响性状的 QTL 具有较大效应的情况下,GENMIX 和 MMA 的表现相似。

结论

在发现研究中,我们会识别出排名较高的标记,然后在验证研究中进行检查,因此我们预计 GENMIX 会比 MMA 更有效地富集候选标记,从而增加真正阳性标记的数量,减少假阳性标记的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c90/3206889/3ee4ad1914f8/pone.0027061.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验