文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于光声和超声成像的组织模拟体模。

Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging.

作者信息

Cook Jason R, Bouchard Richard R, Emelianov Stanislav Y

出版信息

Biomed Opt Express. 2011 Nov 1;2(11):3193-206. doi: 10.1364/BOE.2.003193. Epub 2011 Oct 27.


DOI:10.1364/BOE.2.003193
PMID:22076278
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3207386/
Abstract

In both photoacoustic (PA) and ultrasonic (US) imaging, overall image quality is influenced by the optical and acoustical properties of the medium. Consequently, with the increased use of combined PA and US (PAUS) imaging in preclinical and clinical applications, the ability to provide phantoms that are capable of mimicking desired properties of soft tissues is critical. To this end, gelatin-based phantoms were constructed with various additives to provide realistic acoustic and optical properties. Forty-micron, spherical silica particles were used to induce acoustic scattering, Intralipid(®) 20% IV fat emulsion was employed to enhance optical scattering and ultrasonic attenuation, while India Ink, Direct Red 81, and Evans blue dyes were utilized to achieve optical absorption typical of soft tissues. The following parameters were then measured in each phantom formulation: speed of sound, acoustic attenuation (from 6 to 22 MHz), acoustic backscatter coefficient (from 6 to 22 MHz), optical absorption (from 400 nm to 1300 nm), and optical scattering (from 400 nm to 1300 nm). Results from these measurements were then compared to similar measurements, which are offered by the literature, for various soft tissue types. Based on these comparisons, it was shown that a reasonably accurate tissue-mimicking phantom could be constructed using a gelatin base with the aforementioned additives. Thus, it is possible to construct a phantom that mimics specific tissue acoustical and/or optical properties for the purpose of PAUS imaging studies.

摘要

在光声(PA)成像和超声(US)成像中,整体图像质量均受介质的光学和声学特性影响。因此,随着PA和US联合(PAUS)成像在临床前和临床应用中的使用增加,提供能够模拟软组织所需特性的体模至关重要。为此,构建了添加各种添加剂的明胶基体模,以提供逼真的声学和光学特性。使用40微米的球形二氧化硅颗粒来诱导声学散射,采用20%的英脱利匹特(®)静脉脂肪乳剂来增强光学散射和超声衰减,同时使用印度墨水、直接红81和伊文思蓝染料来实现软组织典型的光吸收。然后在每种体模配方中测量以下参数:声速、声学衰减(6至22兆赫兹)、声学后向散射系数(6至22兆赫兹)、光吸收(400纳米至1300纳米)和光散射(400纳米至1300纳米)。然后将这些测量结果与文献中针对各种软组织类型提供的类似测量结果进行比较。基于这些比较,结果表明使用含有上述添加剂的明胶基体能构建出相当准确的组织模拟体模。因此,为了进行PAUS成像研究,有可能构建出模拟特定组织声学和/或光学特性的体模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/fae809177090/boe-2-11-3193-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/ac289617460f/boe-2-11-3193-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/7c0a3defbf87/boe-2-11-3193-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/ae95da82d28c/boe-2-11-3193-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/fae809177090/boe-2-11-3193-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/ac289617460f/boe-2-11-3193-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/7c0a3defbf87/boe-2-11-3193-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/ae95da82d28c/boe-2-11-3193-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7dd/3207386/fae809177090/boe-2-11-3193-g004.jpg

相似文献

[1]
Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging.

Biomed Opt Express. 2011-11-1

[2]
Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties.

Med Phys. 2016-6

[3]
Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.

Med Phys. 2019-8-20

[4]
Investigation of silk as a phantom material for ultrasound and photoacoustic imaging.

Photoacoustics. 2022-10-13

[5]
High-resolution acoustic mapping of tunable gelatin-based phantoms for ultrasound tissue characterization.

Front Bioeng Biotechnol. 2024-2-22

[6]
Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

Med Phys. 2010-4

[7]
Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging.

Biomed Opt Express. 2018-2-15

[8]
Acoustical properties of selected tissue phantom materials for ultrasound imaging.

Phys Med Biol. 2007-10-21

[9]
Stable phantom materials for ultrasound and optical imaging.

Phys Med Biol. 2017-1-21

[10]
Development and characterization of a tissue mimicking psyllium husk gelatin phantom for ultrasound and magnetic resonance imaging.

Int J Hyperthermia. 2020

引用本文的文献

[1]
Acoustic reflector-enabled forward-viewing ultrasound image-guided access.

J Med Imaging (Bellingham). 2025-3

[2]
Design and characterization of an optical phantom for mesoscopic multimodal fluorescence lifetime imaging and optical coherence elastography.

Biomed Opt Express. 2025-2-12

[3]
Ultrasound and Photoacoustic Imaging of Nanoparticle-Engineered T Cells and Post-Treatment Assessment to Guide Adoptive Cell Immunotherapy.

ACS Nano. 2025-2-18

[4]
Tutorial on methods for estimation of optical absorption and scattering properties of tissue.

J Biomed Opt. 2024-6

[5]
The dynamic response of human lungs due to underwater shock wave exposure.

PLoS One. 2024

[6]
Estimation of the mass density of biological matter from refractive index measurements.

Biophys Rep (N Y). 2024-6-12

[7]
A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments.

J Biophotonics. 2024-6

[8]
SonicGuard Sensor-A Multichannel Acoustic Sensor for Long-Term Monitoring of Abdominal Sounds Examined through a Qualification Study.

Sensors (Basel). 2024-3-13

[9]
High-resolution acoustic mapping of tunable gelatin-based phantoms for ultrasound tissue characterization.

Front Bioeng Biotechnol. 2024-2-22

[10]
High-Performance PMN-PT Single-Crystal-Based 1-3 Composite Transducer Integrated with a Biopsy Needle.

Biosensors (Basel). 2024-1-31

本文引用的文献

[1]
Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm.

J Biomed Opt. 1999-1

[2]
Photoacoustic imaging of prostate brachytherapy seeds.

Biomed Opt Express. 2011-8-1

[3]
Determining the optical properties of turbid mediaby using the adding-doubling method.

Appl Opt. 1993-2-1

[4]
Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm.

Appl Opt. 1991-11-1

[5]
Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm.

Appl Opt. 1989-6-15

[6]
Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations.

Anal Bioanal Chem. 2010-4-12

[7]
Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer.

Nano Lett. 2009-8

[8]
Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques.

Nano Lett. 2009-6

[9]
Biosensing with plasmonic nanosensors.

Nat Mater. 2008-6

[10]
Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging.

J Biomed Opt. 2007

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索