Suppr超能文献

地区性中毒信息中心 IVR 药物识别系统:是否达到其目标?

A regional poison information center IVR medication identification system: does it accomplish its goal?

机构信息

School of Pharmacy, University of Pittsburgh, 200 Lothrop Street, BIR 010701, Pittsburgh, PA 15213, United States.

出版信息

Clin Toxicol (Phila). 2011 Nov;49(9):858-61. doi: 10.3109/15563650.2011.619138.

Abstract

BACKGROUND

The 2009 AAPCC NPDS report identified 1,057,632 medication identification requests to poison information centers. This represents 24.7% of all calls to US poison information centers. To reduce the impact of medication identification requests on a poison information center, a regional poison information center developed and implemented an automated medication identification system that utilized an interactive voice response (IVR) system. The objective of this project was to describe how the IVR affected the regional poison information center medication identification request call volume and workload of the staff.

METHODS

All documented medication identification request inquiries from January 1, 2007 through June 30, 2011 were extracted from the RPIC Visual Dotlab electronic medical record system. Descriptive statistics, presented as means, were used to characterize the monthly call volume inquiries.

RESULTS

Over the 18 months (January, 2007 to June, 2008) preceding the implementation of the IVR medication identification request system, a mean of 4,389.6 medication identification requests per month required manual electronic documentation by SPI. In the immediate 12 months (August, 2008 to July, 2009) following the IVR medication identification request system implementation, a mean of 2132.6 inquiries per month (54% reduction) were managed by the IVR. During the 12 month period of July, 2010 through June, 2011, the combined monthly mean of medication identification requests documented by SPI and the IVR decreased to a total of 686.7 compared to the mean pre-implementation monthly total of 4,389.6.

CONCLUSIONS

The IVR medication identification request system was successful in reducing the number of medication identification requests that required manual electronic documentation by SPI and freed up a substantial amount of time for SPI to perform other critical patient care-related responsibilities. The enhanced technology that was implemented to improve efficiency came with the unintended consequence of discouraging the public from using the RPIC medication identification service as extensively.

摘要

背景

2009 年 AAPCC NPDS 报告确定了向毒物信息中心提出的 1057632 次药物识别请求。这代表了所有拨打美国毒物信息中心电话的 24.7%。为了减少药物识别请求对毒物信息中心的影响,一个地区毒物信息中心开发并实施了一个利用交互式语音应答(IVR)系统的自动化药物识别系统。本项目的目的是描述 IVR 如何影响地区毒物信息中心药物识别请求的电话量和工作人员的工作量。

方法

从 RPIC Visual Dotlab 电子病历系统中提取了 2007 年 1 月 1 日至 2011 年 6 月 30 日所有记录的药物识别请求查询。使用描述性统计数据(以平均值表示)来描述每月的电话量查询。

结果

在实施 IVR 药物识别请求系统之前的 18 个月(2007 年 1 月至 2008 年 6 月)期间,SPI 每月平均需要手动电子记录 4389.6 次药物识别请求。在 IVR 药物识别请求系统实施后的 12 个月(2008 年 8 月至 2009 年 7 月)内,每月平均有 2132.6 次查询(减少 54%)通过 IVR 进行管理。在 2010 年 7 月至 2011 年 6 月的 12 个月期间,SPI 和 IVR 记录的药物识别请求的每月平均总数减少到 686.7,而实施前每月的平均总数为 4389.6。

结论

IVR 药物识别请求系统成功地减少了 SPI 需要手动电子记录的药物识别请求数量,并为 SPI 腾出了大量时间来履行其他与患者护理相关的关键职责。实施增强技术以提高效率的同时,也带来了意想不到的后果,即阻止公众广泛使用 RPIC 的药物识别服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验