Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Phys Chem A. 2011 Dec 8;115(48):14120-6. doi: 10.1021/jp208013m. Epub 2011 Nov 11.
A conical intersection between the ground and first-excited states of water is computed through the direct calculation of two-electron reduced density matrices (2-RDMs) from solutions of the anti-Hermitian contracted Schrödinger equation (ACSE). This study is an extension of a previous study in which the ACSE was used to compute the energies around a conical intersection in the triplet excited states of methylene [Snyder, J. W., Jr.; Rothman, A. E.; Foley, J. J.; Mazziotti, D. A. J. Chem. Phys. 2010, 132, 154109]. We compute absolute energies of the 1(1)A' and 2(1)A' states of water (H(2)O) and the location of the conical intersection. The ACSE energies are compared to those from ab initio wave function methods. To treat multireference correlation, we seed the ACSE with an initial 2-RDM from a multiconfiguration self-consistent field (MCSCF) calculation. Unlike the situation for methylene, the two states in the vicinity of the conical intersection of water both have the same spatial symmetry. Hence, the study demonstrates the ability of the ACSE to resolve states of the same spatial symmetry that are nearly degenerate in energy. The 2-RDMs from the ACSE nearly satisfy necessary N-representability conditions. Comparison of the results from double-ζ and augmented double-ζ basis sets demonstrates the importance of augmented (or diffuse) functions for determining the location of the conical intersection.
通过求解反厄米特约化薛定谔方程(ACSE)得到的双电子约化密度矩阵(2-RDM)的直接计算,计算了水的基态和第一激发态之间的锥形交叉。本研究是先前研究的扩展,先前研究中使用 ACSE 计算了亚甲基三重态激发态中锥形交叉处的能量[Snyder,J.W.,Jr.;Rothman,A.E.;Foley,J.J.;Mazziotti,D.A. J. Chem. Phys. 2010,132,154109]。我们计算了水(H 2 O)的 1(1)A'和 2(1)A'态的绝对能量和锥形交叉的位置。将 ACSE 能量与从头算波函数方法的能量进行了比较。为了处理多参考相关,我们从多组态自洽场(MCSCF)计算中用初始 2-RDM 来启动 ACSE。与亚甲基的情况不同,水的锥形交叉附近的两个态具有相同的空间对称性。因此,该研究证明了 ACSE 能够分辨出能量几乎简并的具有相同空间对称性的态。来自 ACSE 的 2-RDM 几乎满足必要的 N 可表示性条件。比较双 ζ 和扩充双 ζ 基组的结果表明,对于确定锥形交叉的位置,扩充(或弥散)函数很重要。