Suppr超能文献

来自反厄米收缩薛定谔方程的双电子约化密度矩阵:更大基组下增强的能量和性质

Two-electron reduced density matrices from the anti-Hermitian contracted Schrodinger equation: enhanced energies and properties with larger basis sets.

作者信息

Mazziotti David A

机构信息

Department of Chemistry, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2007 May 14;126(18):184101. doi: 10.1063/1.2723115.

Abstract

Two-electron reduced density matrices (2-RDMs) have recently been directly determined from the solution of the anti-Hermitian contracted Schrodinger equation (ACSE) to obtain 95%-100% of the ground-state correlation energy of atoms and molecules, which significantly improves upon the accuracy of the contracted Schrodinger equation (CSE) [D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)]. Two subsets of the CSE, the ACSE and the contraction of the CSE onto the one-particle space, known as the 1,3-CSE, have two important properties: (i) dependence upon only the 3-RDM and (ii) inclusion of all second-order terms when the 3-RDM is reconstructed as only a first-order functional of the 2-RDM. The error in the 1,3-CSE has an important role as a stopping criterion in solving the ACSE for the 2-RDM. Using a computationally more efficient implementation of the ACSE, the author treats a variety of molecules, including H2O, NH3, HCN, and HO3-, in larger basis sets such as correlation-consistent polarized double- and triple-zeta. The ground-state energy of neon is also calculated in a polarized quadruple-zeta basis set with extrapolation to the complete basis-set limit, and the equilibrium bond length and harmonic frequency of N2 are computed with comparison to experimental values. The author observes that increasing the basis set enhances the ability of the ACSE to capture correlation effects in ground-state energies and properties. In the triple-zeta basis set, for example, the ACSE yields energies and properties that are closer in accuracy to coupled cluster with single, double, and triple excitations than to coupled cluster with single and double excitations. In all basis sets, the computed 2-RDMs very closely satisfy known N-representability conditions.

摘要

双电子约化密度矩阵(2-RDMs)最近已通过反厄米收缩薛定谔方程(ACSE)的解直接确定,以获得原子和分子基态相关能的95% - 100%,这显著提高了收缩薛定谔方程(CSE)的精度[D. A. 马佐蒂,《物理评论快报》97, 143002 (2006)]。CSE的两个子集,即ACSE以及CSE在单粒子空间上的收缩(称为1,3-CSE),具有两个重要性质:(i)仅依赖于3-RDM,以及(ii)当3-RDM被重构为仅关于2-RDM的一阶泛函时包含所有二阶项。1,3-CSE中的误差在求解2-RDM的ACSE时作为停止准则起着重要作用。作者使用计算效率更高的ACSE实现方式,在诸如相关一致极化双ζ和三ζ等更大的基组中处理了包括H₂O、NH₃⁻、HCN和HO₃⁻在内的多种分子。还在极化四重ζ基组中计算了氖的基态能量并外推到完全基组极限,并且计算了N₂的平衡键长和谐振频率并与实验值进行比较。作者观察到增加基组增强了ACSE捕捉基态能量和性质中相关效应的能力。例如,在三ζ基组中,ACSE产生的能量和性质在精度上更接近单、双、三激发耦合簇方法,而不是单、双激发耦合簇方法。在所有基组中,计算得到的2-RDMs非常紧密地满足已知的N可表示性条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验