Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
Nucleic Acids Res. 2012 Mar;40(5):1984-99. doi: 10.1093/nar/gkr976. Epub 2011 Nov 12.
DNA repeats constitute potential sites for the nucleation of secondary structures such as hairpins and cruciforms. Studies performed mostly in bacteria and yeast showed that these noncanonical DNA structures are breakage-prone, making them candidate targets for cellular DNA repair pathways. Possible culprits for fragility at repetitive DNA sequences include replication and transcription as well as the action of structure-specific nucleases. Despite their patent biological relevance, the parameters governing DNA repeat-associated chromosomal transactions remain ill-defined. Here, we established an episomal recombination system based on donor and acceptor complementary DNA templates to investigate the role of direct and inverted DNA repeats in homologous recombination (HR) in mammalian cells. This system allowed us also to ascertain in a stringent manner the impact of repetitive sequence replication on homology-directed gene repair. We found that nonspaced DNA repeats can, per se, engage the HR pathway of the cell and that this process is primarily dependent on their spacing and relative arrangement (i.e. parallel or antiparallel) rather than on their sequence. Indeed, our data demonstrate that contrary to direct and spaced inverted repeats, nonspaced inverted repeats are intrinsically recombinogenic motifs in mammalian cells lending experimental support to their role in genome dynamics in higher eukaryotes.
DNA 重复序列构成了二级结构(如发夹和十字结构)形成的潜在位置。在细菌和酵母中进行的研究表明,这些非典型的 DNA 结构容易断裂,使其成为细胞 DNA 修复途径的候选靶点。重复 DNA 序列的脆弱性的可能原因包括复制和转录以及结构特异性核酸酶的作用。尽管它们具有明显的生物学相关性,但控制 DNA 重复相关染色体转位的参数仍未明确界定。在这里,我们建立了基于供体和受体互补 DNA 模板的附加体重组系统,以研究直接和反向 DNA 重复在哺乳动物细胞中同源重组(HR)中的作用。该系统还使我们能够严格确定重复序列复制对同源定向基因修复的影响。我们发现,非间隔 DNA 重复序列本身可以参与细胞的 HR 途径,并且该过程主要取决于它们的间隔和相对排列(即平行或反平行),而不是序列。事实上,我们的数据表明,与直接和间隔的反向重复序列相反,非间隔的反向重复序列本身就是哺乳动物细胞中的重组基因序列,这为它们在真核生物基因组动力学中的作用提供了实验支持。