Laboratory of Molecular and Cellular Signaling, Department Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, Leuven, Belgium.
Autophagy. 2011 Dec;7(12):1472-89. doi: 10.4161/auto.7.12.17909.
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.
细胞内钙离子信号在饥饿诱导的自噬中的作用尚不清楚。在这里,我们研究了饥饿诱导的自噬过程中的钙离子动力学及其潜在的分子机制。与自噬刺激紧密相关的是,我们观察到了钙离子信号体的重构。首先,短时间的饥饿(1 到 3 小时)会导致内质网钙库含量显著增加,并增强激动剂诱导的钙离子释放。这一机制涉及到内质网腔内钙结合蛋白钙网蛋白和 Grp78/BiP 的上调,这增加了内质网钙离子缓冲能力并减少了内质网钙离子泄漏。其次,饥饿导致 Ins(1,4,5)P3R 敏化。免疫沉淀实验表明,在饥饿期间,Beclin 1 从 Bcl-2 中释放出来,首先以增加的效率与 Ins(1,4,5)P3Rs 结合;在 3 小时后达到最大结合后,结合再次减少。Beclin 1 的结合位点被确定位于 Ins(1,4,5)P3R 的 N 端 Ins(1,4,5)P3 结合结构域内。在用 BECN1 siRNA 处理的细胞中,饥饿诱导的 Ins(1,4,5)P3R 敏化被消除,但用 ATG5 siRNA 处理则没有,这表明 Beclin 1 在这一过程中起着至关重要的作用。此外,重组 Beclin 1 在 45Ca2+-通量测定中敏化 Ins(1,4,5)P3Rs,表明 Beclin 1 直接调节 Ins(1,4,5)P3R 的活性。最后,我们发现 Ins(1,4,5)P3R 介导的钙离子信号对于饥饿诱导的自噬刺激至关重要,因为钙离子螯合剂 BAPTA-AM 以及 Ins(1,4,5)P3R 抑制剂 xestospongin B 都消除了 LC3 脂质化和 GFP-LC3 斑点形成的增加。因此,我们的结果表明,细胞内钙离子信号与饥饿诱导的自噬刺激之间存在紧密而必要的相互关系,这是对饥饿反应的一个近端事件。