Suppr超能文献

候选杀微生物剂对细胞相关 HIV 的体外活性。

In vitro activities of candidate microbicides against cell-associated HIV.

机构信息

Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium.

出版信息

Antimicrob Agents Chemother. 2012 Feb;56(2):805-15. doi: 10.1128/AAC.05801-11. Epub 2011 Nov 14.

Abstract

Most research on HIV transmission and microbicides focuses on the inhibition of cell-free virus (CFV) present in genital secretions. However, an effective microbicide should also block the transmission of cell-associated virus (CAV) originating from seminal T cells and macrophages. Because inhibition of CAV remains controversial, especially for viral entry inhibitors, we developed a novel in vitro assay to evaluate the activities of different classes of candidate microbicides against cell-free HIV and HIV-infected leukocytes (i.e., resting peripheral blood mononuclear cells [PBMC], activated PBMC, and monocyte-derived macrophages). The assay is based on two CD4(+) CXCR4(+) T-cell lines (R5MaRBLE and X4MaRBLE) that both contain a firefly luciferase reporter gene but differ in the expression of the CCR5 coreceptor. Consequently, the quantification of the luciferase activities and the Gag p24 concentrations in cocultures of R5-tropic HIV-infected leukocytes with each cell line separately allowed us to discriminate between the infection of the cell lines (i.e., target cells), the ongoing infection in the HIV-infected leukocytes (i.e., effector cells), and the total infection of the coculture (i.e., effector plus target cells). All 14 antiretrovirals tested were able to block target cell infection by all three sources of CAV, although a small decrease in activity (2- to 18-fold) was observed for all entry inhibitors. On the other hand, the production of Gag p24 by the infected effector cells could be blocked only by protease inhibitors. Overall, these results show that entry and protease inhibitors are eligible drug classes for inclusion in future combination microbicides.

摘要

大多数关于 HIV 传播和杀微生物剂的研究都集中在抑制生殖分泌物中存在的无细胞病毒 (CFV)。然而,有效的杀微生物剂还应该阻断来自精液 T 细胞和巨噬细胞的细胞相关病毒 (CAV) 的传播。由于对 CAV 的抑制作用仍然存在争议,特别是对于病毒进入抑制剂,我们开发了一种新的体外测定法来评估不同类别候选杀微生物剂对无细胞 HIV 和感染 HIV 的白细胞(即静止外周血单核细胞 [PBMC]、激活 PBMC 和单核细胞衍生的巨噬细胞)的活性。该测定法基于两种 CD4+CXCR4+T 细胞系(R5MaRBLE 和 X4MaRBLE),它们都含有萤火虫荧光素酶报告基因,但 CCR5 共受体的表达不同。因此,通过分别用每种细胞系共培养 R5 嗜性 HIV 感染的白细胞,可以对荧光素酶活性和 Gag p24 浓度进行定量,从而区分细胞系的感染(即靶细胞)、HIV 感染白细胞中的持续感染(即效应细胞)和共培养物的总感染(即效应细胞+靶细胞)。测试的 14 种抗逆转录病毒药物都能够阻断来自所有三种 CAV 源的靶细胞感染,尽管所有进入抑制剂的活性都略有下降(2-18 倍)。另一方面,只有蛋白酶抑制剂才能阻断感染效应细胞中的 Gag p24 的产生。总体而言,这些结果表明,进入抑制剂和蛋白酶抑制剂是适合包含在未来组合杀微生物剂中的药物类别。

相似文献

1
In vitro activities of candidate microbicides against cell-associated HIV.
Antimicrob Agents Chemother. 2012 Feb;56(2):805-15. doi: 10.1128/AAC.05801-11. Epub 2011 Nov 14.
3
Palmitic Acid Is a Novel CD4 Fusion Inhibitor That Blocks HIV Entry and Infection.
AIDS Res Hum Retroviruses. 2009 Dec;25(12):1231-41. doi: 10.1089/aid.2009.0019.
6
Characterization of HIV-1 entry inhibitors with broad activity against R5 and X4 viral strains.
J Transl Med. 2015 Apr 2;13:107. doi: 10.1186/s12967-015-0461-9.
10
Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1.
Antiviral Res. 2011 Jun;90(3):195-9. doi: 10.1016/j.antiviral.2011.03.186. Epub 2011 Apr 1.

引用本文的文献

2
Modeling mucosal cell-associated HIV type 1 transmission in vitro.
J Infect Dis. 2014 Dec 15;210 Suppl 3(Suppl 3):S648-53. doi: 10.1093/infdis/jiu537.
3
Abasic phosphorothioate oligomers inhibit HIV-1 reverse transcription and block virus transmission across polarized ectocervical organ cultures.
Antimicrob Agents Chemother. 2014 Dec;58(12):7056-71. doi: 10.1128/AAC.02991-14. Epub 2014 Sep 15.
4
Griffithsin protects mice from genital herpes by preventing cell-to-cell spread.
J Virol. 2013 Jun;87(11):6257-69. doi: 10.1128/JVI.00012-13. Epub 2013 Mar 27.
7
Controlling the HIV/AIDS epidemic: current status and global challenges.
Front Immunol. 2012 Aug 14;3:250. doi: 10.3389/fimmu.2012.00250. eCollection 2012.

本文引用的文献

1
T cell polarization at the virological synapse.
Viruses. 2010 Jun;2(6):1261-1278. doi: 10.3390/v2061261. Epub 2010 May 31.
3
HIV sexual transmission and microbicides.
Rev Med Virol. 2011 Mar;21(2):110-33. doi: 10.1002/rmv.684. Epub 2011 Mar 15.
5
Targeting early infection to prevent HIV-1 mucosal transmission.
Nature. 2010 Mar 11;464(7286):217-23. doi: 10.1038/nature08757.
6
Development of an in vitro dual-chamber model of the female genital tract as a screening tool for epithelial toxicity.
J Virol Methods. 2010 May;165(2):186-97. doi: 10.1016/j.jviromet.2010.01.018. Epub 2010 Feb 4.
8
Targeting Trojan Horse leukocytes for HIV prevention.
AIDS. 2010 Jan 16;24(2):163-87. doi: 10.1097/QAD.0b013e32833424c8.
9
On the steps of cell-to-cell HIV transmission between CD4 T cells.
Retrovirology. 2009 Oct 13;6:89. doi: 10.1186/1742-4690-6-89.
10
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors block cell-to-cell HIV-1 endocytosis in dendritic cells.
J Gen Virol. 2009 Nov;90(Pt 11):2777-2787. doi: 10.1099/vir.0.012609-0. Epub 2009 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验