Martínez-García Esteban, de Lorenzo Víctor
Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain.
Methods Mol Biol. 2012;813:267-83. doi: 10.1007/978-1-61779-412-4_16.
A good part of the contemporary synthetic biology agenda aims at reprogramming microorganisms to enhance existing functions and/or perform new tasks. Moreover, the functioning of complex regulatory networks, or even a single gene, is revealed only when perturbations are entered in the corresponding dynamic systems and the outcome monitored. These endeavors rely on the availability of genetic tools to successfully modify á la carte the chromosome of target bacteria. Key aspects to this end include the removal of undesired genomic segments, systems for the production of directed mutants and allelic replacements, random mutant libraries to discover new functions, and means to stably implant larger genetic networks into the genome of specific hosts. The list of gram-negative species that are appealing for such genetic refactoring operations is growingly expanding. However, the repertoire of available molecular techniques to do so is very limited beyond Escherichia coli. In this chapter, utilization of novel tools is described (exemplified in two plasmids systems: pBAM1 and pEMG) tailored for facilitating chromosomal engineering procedures in a wide variety of gram-negative microorganisms.
当代合成生物学议程的很大一部分旨在对微生物进行重新编程,以增强其现有功能和/或执行新任务。此外,只有当在相应的动态系统中引入扰动并监测结果时,复杂调控网络甚至单个基因的功能才会显现出来。这些努力依赖于遗传工具的可用性,以便成功地按要求修改目标细菌的染色体。为此的关键方面包括去除不需要的基因组片段、产生定向突变体和等位基因替换的系统、用于发现新功能的随机突变体文库,以及将更大的遗传网络稳定植入特定宿主基因组的方法。适合进行此类基因重构操作的革兰氏阴性菌种类正在不断增加。然而,除了大肠杆菌之外,用于此目的的可用分子技术种类非常有限。在本章中,将描述为促进在多种革兰氏阴性微生物中进行染色体工程操作而定制的新型工具(以两种质粒系统:pBAM1和pEMG为例)的使用。