Suppr超能文献

通过在定制的恶臭假单胞菌底盘中植入重构的二苯并噻吩途径来提高二苯并噻吩生物脱硫能力

Boosting Dibenzothiophene Biodesulfurization Through Implantation of a Refactored DBT Pathway in a Tailored Pseudomonas putida Chassis.

作者信息

Glekas Panayiotis D, Papageorgopoulos Ioannis, Damalas Stamatios G, de Lorenzo Víctor, Mamma Diomi, Martínez-García Esteban, Hatzinikolaou Dimitris G

机构信息

Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece.

Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain.

出版信息

Microb Biotechnol. 2025 Sep;18(9):e70148. doi: 10.1111/1751-7915.70148.

Abstract

This study reports the efficacy of a rationally designed Pseudomonas putida strain to bring about the specific removal of S atoms from dibenzothiophene (DBT), the model heterocyclic sulfur-containing component of raw petroleum. The emphasis on DBT as a model compound stems from its prevalence in fossil fuels and its resistance to hydrodesulfurization, which positions it as a critical target for improving biodesulfurization technologies. To this end, we explored the combinatorial space of the dsz operon of the naturally occurring strain Rhodococcus qingshengii IGTS8-known to achieve dibenzothiophene degradation-by re-engineering the native regulation of the operon, generating permutations of the order of the cognate genes and their ribosomal-binding sites, testing the effects of multicopy versus monocopy doses and introducing the resulting constructs in the tailor-made host. The combination that emerged as best in terms of catalytic efficacy, moderate physiological burden, and durability was one in which the original dsz operon was refactored by [i] reordering its native gene order to dszBCA, [ii] decompressing their naturally occurring translational coupling with optimised ribosomal-binding sites, [iii] engineering its constitutive expression with a heterologous promoter and [iv] inserting the thereby refactored pathway in the Tn7 site of the genome-edited strain P. putida EM384, which is optimised for greater stability and hosting harsh redox reactions. The resulting P. putida DS006 exhibited exceptional DBT desulfurization activity as well as efficiency in model biphasic biodesulfurization systems.

摘要

本研究报告了一种经过合理设计的恶臭假单胞菌菌株的功效,该菌株能够从二苯并噻吩(DBT)中特异性去除硫原子,DBT是原油中含硫杂环成分的模型化合物。将DBT作为模型化合物的重点在于其在化石燃料中的普遍存在以及对加氢脱硫的抗性,这使其成为改进生物脱硫技术的关键目标。为此,我们探索了天然存在的青生红球菌IGTS8的dsz操纵子的组合空间(已知该菌株可实现二苯并噻吩的降解),通过对该操纵子的天然调控进行重新设计,生成同源基因及其核糖体结合位点顺序的排列,测试多拷贝与单拷贝剂量的效果,并将所得构建体引入定制宿主中。在催化效率、适度的生理负担和耐久性方面表现最佳的组合是:[i] 将原始的dsz操纵子的基因顺序重新排列为dszBCA;[ii] 通过优化核糖体结合位点来解除其天然存在的翻译偶联;[iii] 用异源启动子设计其组成型表达;[iv] 将由此重构的途径插入基因组编辑菌株恶臭假单胞菌EM384的Tn7位点,该菌株针对更高的稳定性和承受苛刻的氧化还原反应进行了优化。所得的恶臭假单胞菌DS006在模型双相生物脱硫系统中表现出卓越的DBT脱硫活性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0d/12424062/64b5414f7509/MBT2-18-e70148-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验