Biobehavioral Nursing & Health Systems Department, School of Nursing, University of Washington, Seattle, WA 98195, USA.
Biol Res Nurs. 2013 Apr;15(2):152-9. doi: 10.1177/1099800411423307. Epub 2011 Nov 14.
In limited samples of valuable biological tissues, univariate ranking methods of microarray analyses often fail to show significant differences among expression profiles. In order to allow for hypothesis generation, novel statistical modeling systems can be greatly beneficial. The authors applied new statistical approaches to solve the issue of limited experimental data to generate new hypotheses in CD14(+) cells of patients with HIV-related fatigue (HRF) and healthy controls.
We compared gene expression profiles of CD14(+) cells of nucleoside reverse transcriptase inhibitor (NRTI)-treated HIV patients with low versus high fatigue to healthy controls (n = 5 each). With novel Bayesian modeling procedures, the authors identified 32 genes predictive of low versus high fatigue and 33 genes predictive of healthy versus HIV infection. Sparse association and liquid association networks further elucidated the possible biological pathways in which these genes are involved. RELEVANCE FOR NURSING PRACTICE: Genetic networks developed in a comprehensive Bayesian framework from small sample sizes allow nursing researchers to design future research approaches to address such issues as HRF.
The findings from this pilot study may take us one step closer to the development of useful biomarker targets for fatigue status. Specific and reliable tests are needed to diagnosis, monitor and treat fatigue and mitochondrial dysfunction.
在有限的有价值生物组织样本中,微阵列分析的单变量排序方法往往无法显示表达谱之间的显著差异。为了允许生成假设,可以极大地受益于新型统计建模系统。作者应用新的统计方法来解决有限实验数据的问题,以在 HIV 相关疲劳(HRF)患者和健康对照的 CD14(+)细胞中生成新的假设。
我们比较了接受核苷逆转录酶抑制剂(NRTI)治疗的 HIV 患者中低疲劳与高疲劳的 CD14(+)细胞的基因表达谱,与健康对照组(每组各 5 例)进行比较。通过新颖的贝叶斯建模程序,作者确定了 32 个可预测低疲劳与高疲劳的基因和 33 个可预测健康与 HIV 感染的基因。稀疏关联和液体关联网络进一步阐明了这些基因所涉及的可能生物学途径。
从小样本量综合贝叶斯框架中开发的遗传网络使护理研究人员能够设计未来的研究方法来解决 HRF 等问题。
这项初步研究的结果可能使我们更接近开发用于疲劳状态的有用生物标志物靶标的目标。需要特定和可靠的测试来诊断、监测和治疗疲劳和线粒体功能障碍。