Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany.
Antioxid Redox Signal. 2012 Aug 15;17(4):657-73. doi: 10.1089/ars.2011.4266. Epub 2012 Jan 16.
Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis.
Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites.
Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments.
The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
蛋白质中的半胱氨酸残基参与生化反应的催化,对氧化还原反应至关重要,并通过形成二硫键影响蛋白质结构。半胱氨酸残基的共价翻译后修饰(PTM)是氧化还原调节和信号转导的重要介质,通过将蛋白质活性与细胞氧化还原状态偶联,并且还影响蛋白质的稳定性、功能和定位。原生动物和后生动物寄生虫的一个多样化群体是人类疾病的主要原因,例如疟疾、非洲锥虫病、利什曼病、弓形体病、丝虫病和血吸虫病。
人类寄生虫在经历复杂的生命周期并适应宿主和媒介中不断变化的环境时,会发生巨大的形态和代谢变化。这些过程部分受到寄生虫蛋白 PTM 的调节。在人类寄生虫中,翻译后半胱氨酸修饰参与了信号转导(S-谷胱甘肽化和 S-亚硝基化)、蛋白质氧化还原调节(S-谷胱甘肽化和 S-亚硝基化)、蛋白质运输和亚细胞定位(棕榈酰化和 prenylation)等关键细胞事件,以及入侵和出宿主细胞(棕榈酰化)。这篇综述重点介绍了这些半胱氨酸修饰在寄生虫中的发生和机制。
迄今为止,关于人类寄生虫中半胱氨酸修饰的研究主要基于体外实验。
为了了解寄生虫中的氧化还原信号转导,对半胱氨酸修饰的体内调节及其在寄生虫发育中的作用的研究将非常有趣。