Suppr超能文献

检测单细胞中的代谢活性,重点介绍纳米 SIMS。

Detecting metabolic activities in single cells, with emphasis on nanoSIMS.

机构信息

Max Planck Institute for Marine Microbiology, Bremen, Germany.

出版信息

FEMS Microbiol Rev. 2012 Mar;36(2):486-511. doi: 10.1111/j.1574-6976.2011.00303.x. Epub 2011 Sep 26.

Abstract

Investigating the contribution of microbial populations to biochemical processes of global significance is challenging as there are few approaches that can detect microbial metabolic activities on single-cell level. Given the widespread distribution and importance of microorganisms in elemental transformations, improved methods for measuring microbial activities in naturally occurring microbial communities is essential. In this article, microautoradiography (MAR), Raman microspectroscopy, and Secondary Ion Mass Spectrometry (SIMS) and their combination with isotope labeling and molecular genetic methods for cell identification (i.e. FISH and related methods) are reviewed. We focus our review on the application of MAR-FISH, Raman-FISH, and FISH-SIMS to environmental samples, with a more detailed description of the use of nanoSIMS-based methodologies to identify, quantify, and visualize the incorporation of labeled substrates of single microorganisms in complex microbial communities. We highlight examples from the marine habitat. In addition, relevant technical aspects as well as important considerations concerning sample preparation and handling are presented. We conclude with a perspective on the usefulness of such tools to study the role of microorganisms in biogeochemical cycling from micron to global scales.

摘要

研究微生物种群对具有全球意义的生化过程的贡献具有挑战性,因为几乎没有方法可以在单细胞水平上检测微生物的代谢活性。鉴于微生物在元素转化中的广泛分布和重要性,改进测量自然存在的微生物群落中微生物活性的方法至关重要。本文综述了微放射性自显影术(MAR)、拉曼微光谱学、二次离子质谱(SIMS)以及它们与同位素标记和分子遗传方法(即 FISH 及相关方法)相结合,用于细胞鉴定。我们将重点放在 MAR-FISH、Raman-FISH 和 FISH-SIMS 在环境样品中的应用上,并更详细地描述了基于纳米 SIMS 的方法在识别、定量和可视化复杂微生物群落中单微生物标记底物的掺入方面的应用。我们重点介绍了海洋生境中的例子。此外,还介绍了相关的技术方面以及有关样品制备和处理的重要注意事项。最后,我们对这些工具在从微观到全球尺度研究微生物在生物地球化学循环中的作用的有用性进行了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验