Suppr超能文献

利用定量扫描透射电子显微镜进行单原子的亚细胞定位与识别。

Subcellular localisation and identification of single atoms using quantitative scanning transmission electron microscopy.

作者信息

Sheader A A, Vizcay-Barrena G, Fleck R A, Flatters S J L, Nellist P D

机构信息

Department of Physics, University of Oxford, Oxford, UK.

Centre for Ultrastructural Imaging, King's College London, London, UK.

出版信息

J Microsc. 2025 Jul;299(1):36-48. doi: 10.1111/jmi.13410. Epub 2025 Apr 15.

Abstract

Determining the concentration of elements in subcellular structures poses a significant challenge. By locating an elemental species at high spatial resolution and with subcellular context, and subsequently quantifying it on an absolute scale, new information about cellular function can be revealed. Such measurements have not as yet been realised with existing techniques due to limitations on spatial resolution and inherent difficulties in detecting elements present in low concentrations. In this paper, we use scanning transmission electron microscopy (STEM) to establish a methodology for localising and quantifying high-Z elements in a biological setting by measuring elastic electron scattering. We demonstrate platinum (Pt) deposition within neuronal cell bodies following in vivo administration of the Pt-based chemotherapeutic oxaliplatin to validate this novel methodology. For the first time, individual Pt atoms and nanoscale Pt clusters are shown within subcellular structures. Quantitative measurements of elastic electron scattering are used to determine absolute numbers of Pt atoms in each cluster. Cluster density is calculated on an atoms-per-cubic-nanometre scale, and used to show clusters form with densities below that of metallic Pt. By considering STEM partial scattering cross-sections, we determine that this new approach to subcellular elemental detection may be applicable to elements as light as sodium. LAY DESCRIPTION: Heterogeneous elemental distributions drive fundamental biological processes within cells. While carbon, hydrogen, oxygen and nitrogen comprise by far the majority of living matter, concentrations and locations of more than a dozen other species must also be tightly controlled to ensure normal cell function. Oxaliplatin is a first-line and adjuvant treatment for colorectal cancer. However, pain in the body's extremities (fingers and toes) significantly impairs clinical usage as this serious and persistent side effect impacts on both patient cancer care and quality of life. Annular dark-field (ADF) imaging in the scanning transmission electron microscope (STEM) provides an image with strong atom-number contrast and is sufficient to distinguish between different cell types and different organelles within the cells of the DRG. We also show that Pt may be imaged at the single atom level and be localised at very high resolution while still preserving a degree of ultrastructural context. The intrinsic image contrast generated is sufficient to identify these features without the need for heavy metal stains and other extensive processing steps which risk disturbing native platinum distributions within the tissue. We subsequently demonstrate that by considering the total elastic scattering intensity generated by nanometre-sized Pt aggregations within the cell, the ADF STEM may be used to make a measurement of local concentration of Pt in units of atoms per cubic nanometre. We further estimate the minimum atomic number required to visualise single atoms in this setting, concluding that in similar samples it may be possible to detect species as light as sodium with atomic sensitivity.

摘要

确定亚细胞结构中元素的浓度是一项重大挑战。通过在高空间分辨率和亚细胞背景下定位元素种类,并随后在绝对尺度上对其进行量化,可以揭示有关细胞功能的新信息。由于空间分辨率的限制以及检测低浓度元素存在的固有困难,现有技术尚未实现此类测量。在本文中,我们使用扫描透射电子显微镜(STEM),通过测量弹性电子散射,建立一种在生物环境中定位和量化高Z元素的方法。我们通过对基于铂的化疗药物奥沙利铂进行体内给药,证明了铂(Pt)在神经元细胞体内的沉积,以验证这种新方法。首次在亚细胞结构中展示了单个铂原子和纳米级铂簇。弹性电子散射的定量测量用于确定每个簇中铂原子的绝对数量。簇密度以每立方纳米原子数为单位进行计算,并用于表明簇的形成密度低于金属铂。通过考虑STEM部分散射截面,我们确定这种亚细胞元素检测的新方法可能适用于像钠这样轻的元素。

通俗描述

异质元素分布驱动细胞内的基本生物过程。虽然碳、氢、氧和氮构成了迄今为止绝大多数的生物物质,但十几种其他元素的浓度和位置也必须严格控制,以确保细胞正常功能。奥沙利铂是结直肠癌的一线和辅助治疗药物。然而,身体四肢(手指和脚趾)的疼痛严重影响了其临床应用,因为这种严重且持续的副作用对患者的癌症治疗和生活质量都有影响。扫描透射电子显微镜(STEM)中的环形暗场(ADF)成像提供了具有强原子序数对比度的图像,足以区分背根神经节(DRG)细胞内的不同细胞类型和不同细胞器。我们还表明,铂可以在单原子水平成像,并以非常高的分辨率定位,同时仍保留一定程度的超微结构背景。产生的固有图像对比度足以识别这些特征,而无需重金属染色和其他可能干扰组织内天然铂分布的广泛处理步骤。我们随后证明,通过考虑细胞内纳米级铂聚集体产生的总弹性散射强度,ADF STEM可用于以每立方纳米原子数为单位测量铂的局部浓度。我们进一步估计了在此设置下可视化单个原子所需的最小原子序数,得出结论,在类似样品中,可能能够以原子灵敏度检测像钠这样轻的元素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/385b/12166351/b437be4ddb17/JMI-299-36-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验