Leukemia Service and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
Hematol Oncol Clin North Am. 2011 Dec;25(6):1119-33. doi: 10.1016/j.hoc.2011.09.013. Epub 2011 Oct 29.
The studies highlighted in this article suggest that mutations in TET2 mutations may impart adverse outcome in patients with CN-AML, whereas mutations in DNMT3a may have adverse implications in a broader set of patients with AML. The data with IDH enzyme mutations are less clear, in that individual IDH1 and IDH2 mutations may have different clinical effects and the data so far have not suggested a uniform effect on outcome. Despite the exciting data indicating that mutational testing for these alterations may be clinically useful, several challenges to understanding their clinical relevance remain. First, patients may simultaneously have mutations in multiple genes described in this article (FLT3, NPM1, CEBPa, DNMT3a, IDH1/2, or TET2), and in additional genes not mentioned earlier (Ras,47 PTEN,48 PHF6,49 ASXL1,15 and RUNX145). Furthermore, comprehensive sequencing studies of well-annotated, homogeneously treated patient cohorts are needed to understand the clinical implications of integrated mutational profiling in AML. An additional challenge to using mutational analysis for TET2 and DNMT3a in clinical use is identifying a means for rapid molecular testing of these mutations. This challenge may be met by the use of non–polymerase chain reaction–based methods of target enrichment, such as hybrid capture, followed by next-generation sequencing technologies. Moreover, clinical studies evaluating the biochemical consequences of mutations in some of these genes (eg, production of 2-HG in bodily fluids from patients with IDH-mutant AML or increased hydroxymethylcytosine levels in pretreatment blast DNA in patients with TET2/IDH mutant AML) may also prove to be useful in identifying biomarkers. Alternatively, protein-based technologies such as immunohistochemistry or mass spectrometry may be used in the clinical setting to detect the mutant proteins or loss of expression of specific proteins in patients with mutations. An additional area of importance highlighted by these discoveries is the increasing realization that several of these genes encode enzymes or result in alterations in enzymatic activities, which may represent novel, tractable therapeutic targets for patients with AML. This finding may hopefully lead to the development of novel targeted therapeutics for patients with specific genetic alterations in AML. This development may be occurring now with the advent of DOT1L-targeted therapy for leukemic cells with translocations involving MLL1.50,51 Studies to identify whether the neomorphic enzymatic activity of IDH1/2 mutations may be targetable or if the downstream effects of TET2 mutations can be targeted are ongoing and may lead to the development of rational epigenetic therapies that improve outcomes for patients with AML.
本文重点介绍的研究表明,TET2 基因突变可能会对伴有中危核型急性髓细胞白血病(CN-AML)的患者产生不良预后,而 DNMT3a 基因突变可能对更广泛的 AML 患者产生不良影响。IDH 酶基因突变的数据则不太明确,因为个别 IDH1 和 IDH2 基因突变可能具有不同的临床影响,而且迄今为止的数据并未表明对结果有统一的影响。尽管有令人兴奋的数据表明,对这些改变进行突变检测可能具有临床意义,但在理解其临床相关性方面仍存在一些挑战。首先,患者可能同时存在本文所述的多个基因(FLT3、NPM1、CEBPa、DNMT3a、IDH1/2 或 TET2)的突变,以及以前未提到的其他基因(Ras、47 PTEN、48 PHF6、49 ASXL1、15 和 RUNX145)的突变。此外,需要对经过充分注释、同质治疗的患者队列进行全面的测序研究,以了解 AML 中整合突变分析的临床意义。在临床应用中使用 TET2 和 DNMT3a 的突变分析面临的另一个挑战是确定快速分子检测这些突变的方法。这一挑战可能通过使用非聚合酶链反应(PCR)方法的靶向富集来实现,例如杂交捕获,然后进行下一代测序技术。此外,评估这些基因中的某些基因突变(例如,具有 IDH 突变的 AML 患者体液中 2-HG 的产生或具有 TET2/IDH 突变的 AML 患者预处理原始细胞 DNA 中羟甲基胞嘧啶水平增加)的生化后果的临床研究也可能证明有助于识别生物标志物。或者,可以在临床环境中使用基于蛋白质的技术(例如免疫组化或质谱)来检测患者突变体中的突变蛋白或特定蛋白表达缺失。这些发现强调的另一个重要领域是,越来越认识到这些基因中的几个基因编码酶或导致酶活性改变,这可能代表 AML 患者的新型、可治疗的治疗靶点。这一发现有望为具有特定 AML 基因突变的患者开发新型靶向治疗药物。这一发展可能正在进行中,因为出现了针对涉及 MLL1 的白血病细胞的 DOT1L 靶向治疗。50,51 正在进行研究以确定 IDH1/2 突变的新酶活性是否可靶向,或者 TET2 突变的下游效应是否可靶向,这可能导致开发合理的表观遗传治疗方法,改善 AML 患者的预后。