Weis Frederik, Gao Kun, Seipenbusch Martin, Kasper Gerhard
Institut für Mechanische Verfahrenstechnik und Mechanik, Karlsruhe Institute of Technology (KIT), Strasse am Forum 8, 76131 Karlsruhe, Germany.
J Nanosci Nanotechnol. 2011 Sep;11(9):8313-7. doi: 10.1166/jnn.2011.5071.
We report the synthesis of composite nanoparticles by an integrated CVS/CVD process at atmospheric pressure. Iron oxide and silica support particles were generated by chemical vapour synthesis (CVS), using Fe(CO)5 and Si(OC2H5)4 and were directly coated in the aerosol state with molybdenum oxide by chemical vapour deposition of Mo(CO)6. Depending on the CVS temperature hematite (600 degrees C) or maghemite (1500 degrees C) iron oxide phases were determined by XRD and FTIR. Core-shell structures with a coating thickness in the lower nm range were obtained for CVD temperatures below 150 degrees C. Complete encapsulation of the core particles and uniform elemental distribution is shown by TEM and EELS measurements. Higher CVD temperatures lead to unwanted homogenous decomposition of the molybdenum precursor. Additional aerosol temperature treatment was used to reach further oxidation and the formation of a mixed oxide shell, indicated by FTIR measurements. The results show the potential of the process for the synthesis of structured core-shell nanoparticles.
我们报道了在大气压下通过集成化学气相合成/化学气相沉积(CVS/CVD)工艺合成复合纳米颗粒的过程。使用Fe(CO)5和Si(OC2H5)4通过化学气相合成(CVS)生成氧化铁和二氧化硅载体颗粒,并通过Mo(CO)6的化学气相沉积以气溶胶状态直接用氧化钼包覆。根据CVS温度,通过X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)确定赤铁矿(600摄氏度)或磁赤铁矿(1500摄氏度)氧化铁相。对于低于150摄氏度的CVD温度,获得了涂层厚度在较低纳米范围内的核壳结构。透射电子显微镜(TEM)和电子能量损失谱(EELS)测量表明核心颗粒被完全包覆且元素分布均匀。较高的CVD温度会导致钼前驱体发生不必要的均匀分解。通过FTIR测量表明,额外的气溶胶温度处理用于实现进一步氧化并形成混合氧化物壳。结果显示了该工艺在合成结构化核壳纳米颗粒方面的潜力。