Suppr超能文献

NGF released from a polymer matrix prevents loss of ChAT expression in basal forebrain neurons following a fimbria-fornix lesion.

作者信息

Hoffman D, Wahlberg L, Aebischer P

机构信息

Section of Artificial Organs, Biomaterials, and Cellular Technology, Brown University, Providence, Rhode Island 02912.

出版信息

Exp Neurol. 1990 Oct;110(1):39-44. doi: 10.1016/0014-4886(90)90049-x.

Abstract

Following a unilateral fimbria-fornix lesion, the delivery of nerve growth factor (NGF) to the ipsilateral lateral ventricle of the rat can prevent the lesion-induced loss of choline acetyltransferase (ChAT) expression in the ipsilateral medial septum and vertical diagonal band region. In the present study, the ability of polymer rods to deliver NGF and to prevent a decrease in basal forebrain ChAT expression following a fimbria-fornix lesion was assessed. NGF was loaded into an ethylene vinyl acetate copolymer (EVAc) rod, fabricated by a melt-extrusion process. NGF release was established by the ability of the rods to induce neurite extension from PC12 cells and chick E12 dorsal root ganglia. Unilateral aspirative lesions of the fimbria-fornix were performed in adult rats, followed by implantation of a polymer rod into the ipsilateral lateral ventricle. Five animals received EVAc rods containing only the carrier molecule bovine serum albumin (BSA), and six received EVAc rods containing both BSA and NGF. After 2 weeks, ChAT-positive cells were counted in the medial septum and vertical diagonal band regions. Rats with NGF-releasing rods displayed ChAT(+) cell counts ipsilateral to the lesion equal to 88% of those on the contralateral side. In contrast, ChAT(+) cell numbers were 42% in animals with rods releasing BSA only (P less than 0.001). No undue reaction to implanted rods was noted. Following a fimbria-fornix lesion, NGF released from polymer matrices effectively prevents a lesion-induced reduction in ChAT expression in basal forebrain neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验