Suppr超能文献

一种用于大规模生产微囊化胰岛的可扩展微流控装置。

A scalable microfluidic device for the mass production of microencapsulated islets.

作者信息

Tendulkar S, McQuilling J P, Childers C, Pareta R, Opara E C, Ramasubramanian M K

机构信息

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA.

出版信息

Transplant Proc. 2011 Nov;43(9):3184-7. doi: 10.1016/j.transproceed.2011.10.023.

Abstract

The objective of this research was to test the viability and function of islets microencapsulated using a scalable microfluidic device that is suitable for the mass production of encapsulated islets for transplantation. A 3-D microfluidic device consisting of eight outlets with an inner fluid inlet and an outer concentric inlet to the device has been designed and fabricated using the stereolithography rapid prototyping technique. Islets were isolated from normal Wistar-Furth rat pancreas using the procedure of collagenase digestion of pancreatic tissue. Following purification, islet suspensions in 1.5% sodium alginate were pumped into the fluid inlet of the microfluidic device, which distributed the flow equally to all the eight channels according to the design. The air plenum distributed compressed air uniformly through the eight concurrent outlets, and with one fluid pump and air source, the device produced eight microencapsulations simultaneously. After encapsulation, the islets were tested for functionality using the dynamic perifusion procedure with low- and high-glucose concentrations. The device is capable of producing eight channels of steady stream of monodisperse microencapsulations of a range of diameters depending on the design and process parameters. Using this prototype device, encapsulated islets were shown to be viable in the functional tests that we performed. Thus, the mean ± standard deviation rate of insulin secretion increased from a basal rate of 0.165 ± 0.059 ng/10 islets/min to a stimulated rate of 0.422 ± 0.095 ng/10 islets/min (P < .05, n = 3), when the glucose concentration was changed from 5.5 mmol/L to 27.5 mmol/L, and this glucose stimulation index was not different from that observed with unencapsulated islets under same conditions. In summary, the high-throughput prototype device that we have designed can produce encapsulated islets that are viable and suitable for transplantation studies.

摘要

本研究的目的是测试使用可扩展微流控装置微囊化的胰岛的活力和功能,该装置适用于大规模生产用于移植的微囊化胰岛。利用立体光刻快速成型技术设计并制造了一种三维微流控装置,该装置由八个出口、一个内部流体入口和一个与装置同心的外部入口组成。采用胶原酶消化胰腺组织的方法从正常Wistar-Furth大鼠胰腺中分离胰岛。纯化后,将1.5%海藻酸钠中的胰岛悬浮液泵入微流控装置的流体入口,该入口根据设计将流体均匀分配到所有八个通道。空气腔通过八个并行出口均匀分布压缩空气,通过一个流体泵和一个空气源,该装置可同时进行八个微囊化操作。微囊化后,使用低葡萄糖浓度和高葡萄糖浓度的动态灌流程序对胰岛的功能进行测试。根据设计和工艺参数,该装置能够产生八个通道的稳定单分散微囊流,其直径范围不同。使用该原型装置,在我们进行的功能测试中,微囊化胰岛显示出具有活力。因此,当葡萄糖浓度从5.5 mmol/L变为27.5 mmol/L时,胰岛素分泌的平均±标准差率从基础率0.165±0.059 ng/10个胰岛/分钟增加到刺激率0.422±0.095 ng/10个胰岛/分钟(P<0.05,n = 3),并且该葡萄糖刺激指数与在相同条件下未微囊化胰岛所观察到的指数没有差异。总之,我们设计的高通量原型装置能够生产出具有活力且适合移植研究的微囊化胰岛。

相似文献

引用本文的文献

1
2
Microfluidic-based systems for the management of diabetes.基于微流控的糖尿病管理系统。
Drug Deliv Transl Res. 2024 Nov;14(11):2989-3008. doi: 10.1007/s13346-024-01569-y. Epub 2024 Mar 20.
5
Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy.工程策略改善胰岛移植治疗 1 型糖尿病。
ACS Biomater Sci Eng. 2020 May 11;6(5):2543-2562. doi: 10.1021/acsbiomaterials.9b01406. Epub 2019 Dec 2.

本文引用的文献

3
Design of a bioartificial pancreas(+).生物人工胰腺的设计(+)。
J Investig Med. 2010 Oct;58(7):831-7. doi: 10.231/JIM.0b013e3181ed3807.
6
Membranes and microfluidics: a review.膜与微流体学:综述
Lab Chip. 2006 Sep;6(9):1125-39. doi: 10.1039/b603275c. Epub 2006 Jul 14.
7
The origins and the future of microfluidics.微流体学的起源与未来。
Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058.
10
Physics and applications of microfluidics in biology.微流体技术在生物学中的物理原理及应用
Annu Rev Biomed Eng. 2002;4:261-86. doi: 10.1146/annurev.bioeng.4.112601.125916. Epub 2002 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验