Ray Pragyan, Chakraborty Ruchira, Banik Oindrila, Banoth Earu, Kumar Prasoon
BioDesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India.
Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India.
ACS Omega. 2023 Jan 23;8(4):3606-3629. doi: 10.1021/acsomega.2c05983. eCollection 2023 Jan 31.
Membrane technology is playing a crucial role in cutting-edge innovations in the biomedical field. One such innovation is the surface engineering of a membrane for enhanced longevity, efficient separation, and better throughput. Hence, surface engineering is widely used while developing membranes for its use in bioartificial organ development, separation processes, extracorporeal devices, etc. Chemical-based surface modifications are usually performed by functional group/biomolecule grafting, surface moiety modification, and altercation of hydrophilic and hydrophobic properties. Further, creation of micro/nanogrooves, pillars, channel networks, and other topologies is achieved to modify physio-mechanical processes. These surface modifications facilitate improved cellular attachment, directional migration, and communication among the neighboring cells and enhanced diffusional transport of nutrients, gases, and waste across the membrane. These modifications, apart from improving functional efficiency, also help in overcoming fouling issues, biofilm formation, and infection incidences. Multiple strategies are adopted, like lysozyme enzymatic action, topographical modifications, nanomaterial coating, and antibiotic/antibacterial agent doping in the membrane to counter the challenges of biofilm formation, fouling challenges, and microbial invasion. Therefore, in the current review, we have comprehensibly discussed different types of membranes, their fabrication and surface modifications, antifouling/antibacterial strategies, and their applications in bioengineering. Thus, this review would benefit bioengineers and membrane scientists who aim to improve membranes for applications in tissue engineering, bioseparation, extra corporeal membrane devices, wound healing, and others.
膜技术在生物医学领域的前沿创新中发挥着关键作用。其中一项创新是对膜进行表面工程处理,以提高其使用寿命、实现高效分离并提升通量。因此,在开发用于生物人工器官发育、分离过程、体外装置等的膜时,表面工程被广泛应用。基于化学的表面修饰通常通过官能团/生物分子接枝、表面部分修饰以及亲水性和疏水性的改变来进行。此外,通过创建微/纳米凹槽、柱体、通道网络和其他拓扑结构来改变物理机械过程。这些表面修饰有助于改善细胞附着、定向迁移以及相邻细胞之间的通讯,并增强营养物质、气体和废物在膜上的扩散运输。这些修饰除了提高功能效率外,还有助于克服污染问题、生物膜形成和感染发生率。人们采用了多种策略,如溶菌酶的酶促作用、形貌修饰、纳米材料涂层以及在膜中掺杂抗生素/抗菌剂,以应对生物膜形成、污染挑战和微生物入侵等问题。因此,在当前的综述中,我们全面讨论了不同类型的膜、它们的制备和表面修饰、防污/抗菌策略及其在生物工程中的应用。因此,这篇综述将使旨在改进用于组织工程、生物分离、体外膜装置、伤口愈合等应用的膜的生物工程师和膜科学家受益。