Suppr超能文献

Nrf2对缺乏CD38基因的冠状动脉平滑肌细胞致动脉粥样硬化表型转换的作用

Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene.

作者信息

Xu Ming, Li Xiao-Xue, Wang Lei, Wang Mi, Zhang Yang, Li Pin-Lan

机构信息

Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Cell Physiol Biochem. 2015;37(2):432-44. doi: 10.1159/000430366. Epub 2015 Aug 28.

Abstract

BACKGROUND/AIMS: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC) phenotypic switching remain unknown. Methods &

RESULTS

In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs) from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket), an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2), a basic leucine zipper (bZIP) transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket.

CONCLUSION

Taken together, these results suggest that CD38 activity is required for 7-Ket-induced Ca2+ and consequently O2-. production in CAMs, which increases Nrf2 activity to maintain their differentiated status. When CD38 gene expression and function are deficient, the Nrf2 activity is suppressed, thereby leading to phenotypic switching of CAMs.

摘要

背景/目的:最近的研究表明,CD38基因缺陷会导致动脉平滑肌细胞在致动脉粥样硬化刺激下发生去分化或转分化。然而,介导这种血管平滑肌(SMC)表型转换的分子机制仍不清楚。方法与结果:在本研究中,我们首先对来自CD38基因敲除小鼠的冠状动脉心肌细胞(CAMs)原代培养物中的表型变化进行了表征。结果显示,CD38缺陷降低了收缩标记物钙调蛋白、SM22α和α-SMA的表达,但增加了SMC去分化标记物波形蛋白的表达,同时伴有细胞增殖增强。致动脉粥样硬化刺激物7-酮胆固醇(�-Ket)增强了CD38基因敲除的CAMs中的这种表型变化。我们进一步发现,CD38缺陷降低了核因子E2相关因子2(Nrf2)的表达和活性,Nrf2是一种对氧化还原调节敏感的碱性亮氨酸拉链(bZIP)转录因子。与CD38基因缺失类似,Nrf2基因沉默增强了7-酮胆固醇刺激下的CAM去分化。相反,Nrf2基因的过表达消除了7-酮胆固醇诱导的CD38基因敲除的CAMs中的去分化。鉴于Nrf2对氧化应激的敏感性,我们确定了氧化还原信号在调节与CD38在CAM表型变化中的作用相关的Nrf2表达和活性中的作用。结果表明,在CD38基因敲除的CAMs中,7-酮胆固醇未能刺激超氧阴离子(O₂⁻)的产生,而在CD38基因野生型的CAMs中,7-酮胆固醇诱导了显著的O₂⁻产生和Nrf2活性增强,NOX4基因沉默可显著减弱这种增强。最后,我们证明,7-酮胆固醇诱导的和NOX4依赖性的O₂⁻产生受到8-溴环磷腺苷(8-Br-cADPR)(一种环磷腺苷(cADPR)拮抗剂)或NED-19(一种烟酰胺腺嘌呤二核苷酸磷酸(NAADP)拮抗剂,CD38 ADP-核糖基环化酶的产物)的抑制,这两种拮抗剂在7-酮胆固醇作用下显著抑制了胞质Ca²⁺水平和Nrf2的激活。结论:综上所述,这些结果表明,CD38活性是7-酮胆固醇诱导的Ca²⁺以及因此在CAMs中产生O₂⁻所必需的,这会增加Nrf2活性以维持其分化状态。当CD38基因表达和功能缺陷时,Nrf2活性受到抑制,从而导致CAMs的表型转换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/310e/4678283/1ce1e92d112a/nihms742512f1.jpg

相似文献

1
Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene.
Cell Physiol Biochem. 2015;37(2):432-44. doi: 10.1159/000430366. Epub 2015 Aug 28.
2
Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene.
Cardiovasc Res. 2014 Apr 1;102(1):68-78. doi: 10.1093/cvr/cvu011. Epub 2014 Jan 20.
3
NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.
Free Radic Biol Med. 2012 Jan 15;52(2):357-65. doi: 10.1016/j.freeradbiomed.2011.10.485. Epub 2011 Nov 3.
4
Contribution of NADPH oxidase to membrane CD38 internalization and activation in coronary arterial myocytes.
PLoS One. 2013 Aug 7;8(8):e71212. doi: 10.1371/journal.pone.0071212. Print 2013.
5
Lysosome-dependent Ca(2+) release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts.
Am J Physiol Cell Physiol. 2010 May;298(5):C1209-16. doi: 10.1152/ajpcell.00533.2009. Epub 2010 Mar 3.
6
Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1743-52. doi: 10.1152/ajpheart.00617.2008. Epub 2008 Aug 22.
9
Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy.
Cell Physiol Biochem. 2017;41(2):555-568. doi: 10.1159/000457877. Epub 2017 Feb 3.
10
Inhibitory effects of growth differentiation factor 11 on autophagy deficiency-induced dedifferentiation of arterial smooth muscle cells.
Am J Physiol Heart Circ Physiol. 2019 Feb 1;316(2):H345-H356. doi: 10.1152/ajpheart.00342.2018. Epub 2018 Nov 21.

引用本文的文献

1
CD38 connects the heart and brain.
Transl Psychiatry. 2025 Sep 11;15(1):342. doi: 10.1038/s41398-025-03597-9.
2
Dynamic phenotypic shifts and M2 receptor downregulation in bladder smooth muscle cells induced by mirabegron.
Front Pharmacol. 2024 Jul 24;15:1446831. doi: 10.3389/fphar.2024.1446831. eCollection 2024.
3
The role of CD38 in ischemia reperfusion injury in cardiopulmonary bypass and thoracic transplantation: a narrative review.
J Thorac Dis. 2023 Oct 31;15(10):5736-5749. doi: 10.21037/jtd-23-725. Epub 2023 Sep 11.
7
Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective.
Cells. 2022 Sep 28;11(19):3042. doi: 10.3390/cells11193042.
8
The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors.
Antioxidants (Basel). 2022 Jan 26;11(2):235. doi: 10.3390/antiox11020235.
9
Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases.
Adv Exp Med Biol. 2021;1349:275-301. doi: 10.1007/978-981-16-4254-8_13.

本文引用的文献

1
Geraniol attenuates oxidative stress by Nrf2 activation in diet-induced experimental atherosclerosis.
J Basic Clin Physiol Pharmacol. 2015 Jul;26(4):335-46. doi: 10.1515/jbcpp-2014-0057.
2
Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes.
Cell Physiol Biochem. 2014;34(3):891-902. doi: 10.1159/000366307. Epub 2014 Aug 21.
3
Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation.
Int J Cardiol. 2014 Aug 20;175(3):508-14. doi: 10.1016/j.ijcard.2014.06.045. Epub 2014 Jul 2.
5
Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases.
Messenger (Los Angel). 2013 Jun 1;2(2):63-85. doi: 10.1166/msr.2013.1022.
6
Upregulation of cannabinoid receptor-1 and fibrotic activation of mouse hepatic stellate cells during Schistosoma J. infection: role of NADPH oxidase.
Free Radic Biol Med. 2014 Jun;71:109-120. doi: 10.1016/j.freeradbiomed.2014.03.015. Epub 2014 Mar 19.
7
Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene.
Cardiovasc Res. 2014 Apr 1;102(1):68-78. doi: 10.1093/cvr/cvu011. Epub 2014 Jan 20.
8
Clofibrate induces heme oxygenase 1 expression through a PPARα-independent mechanism in human cancer cells.
Cell Physiol Biochem. 2013;32(5):1255-64. doi: 10.1159/000354524. Epub 2013 Nov 21.
9
Contribution of NADPH oxidase to membrane CD38 internalization and activation in coronary arterial myocytes.
PLoS One. 2013 Aug 7;8(8):e71212. doi: 10.1371/journal.pone.0071212. Print 2013.
10
Zinc at sub-cytotoxic concentrations induces heme oxygenase-1 expression in human cancer cells.
Cell Physiol Biochem. 2013;32(1):100-10. doi: 10.1159/000350128. Epub 2013 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验