Suppr超能文献

贝叶斯视角下的冷冻电镜结构测定。

A Bayesian view on cryo-EM structure determination.

机构信息

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.

出版信息

J Mol Biol. 2012 Jan 13;415(2):406-18. doi: 10.1016/j.jmb.2011.11.010. Epub 2011 Nov 12.

Abstract

Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures.

摘要

通过冷冻电子显微镜(cryo-EM)图像的单颗粒分析来确定三维(3D)结构需要从极其嘈杂的数据中确定许多参数。这使得该方法容易发生过拟合,即当结构描述噪声而不是信号时,特别是在噪声水平最高的分辨率极限附近。冷冻电镜结构通常使用特定程序进行过滤以防止过拟合,但是任意参数的调整可能会导致结果的主观性。我描述了冷冻电镜结构确定的贝叶斯解释,其中在傅立叶域中通过高斯先验对重构密度施加平滑度。统计框架决定了应该如何组合数据和先验知识,以便在不需要任意性的情况下获得最佳的 3D 线性滤波器,并且可以获得客观的分辨率估计。对实验数据的应用表明,与现有方法相比,统计方法可以产生更可靠的结构,并且能够检测到包含多个不同结构的数据集中更小的类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f2/3314964/dcfdb02f97f2/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验