Eberle Claudia, Ament Christoph
Department of Medicine, University of California San Diego UCSD, San Diego, USA.
Biosystems. 2012 Mar;107(3):135-41. doi: 10.1016/j.biosystems.2011.11.003. Epub 2011 Nov 12.
Today, diagnostic decisions about pre-diabetes or diabetes are made using static threshold rules for the measured plasma glucose. In order to develop an alternative diagnostic approach, dynamic models as the Minimal Model may be deployed. We present a novel method to analyze the identifiability of model parameters based on the interpretation of the empirical observability Gramian. This allows a unifying view of both, the observability of the system's states (with dynamics) and the identifiability of the system's parameters (without dynamics). We give an iterative algorithm, in order to find an optimized set of states and parameters to be estimated. For this set, estimation results using an Unscented Kalman Filter (UKF) are presented. Two parameters are of special interest for diagnostic purposes: the glucose effectiveness S(G) characterizes the ability of plasma glucose clearance, and the insulin sensitivity S(I) quantifies the impact from the plasma insulin to the interstitial insulin subsystem. Applying the identifiability analysis to the trajectories of the insulin glucose system during an intravenous glucose tolerance test (IVGTT) shows the following result: (1) if only plasma glucose G(t) is measured, plasma insulin I(t) and S(G) can be estimated, but not S(I). (2) If plasma insulin I(t) is captured additionally, identifiability is improved significantly such that up to four model parameters can be estimated including S(I). (3) The situation of the first case can be improved, if a controlled external dosage of insulin is applied. Then, parameters of the insulin subsystem can be identified approximately from measurement of plasma glucose G(t) only.
如今,关于糖尿病前期或糖尿病的诊断决策是依据所测血浆葡萄糖的静态阈值规则做出的。为了开发一种替代诊断方法,可以采用如最小模型这样的动态模型。我们提出了一种基于经验可观测性格兰姆矩阵解释来分析模型参数可识别性的新方法。这使得我们能够对系统状态的可观测性(具有动态性)和系统参数的可识别性(不具有动态性)有一个统一的认识。我们给出了一种迭代算法,以便找到一组要估计的优化状态和参数。对于这组参数,给出了使用无迹卡尔曼滤波器(UKF)的估计结果。出于诊断目的,有两个参数特别受关注:葡萄糖效能S(G)表征血浆葡萄糖清除能力,胰岛素敏感性S(I)量化血浆胰岛素对间质胰岛素子系统的影响。将可识别性分析应用于静脉葡萄糖耐量试验(IVGTT)期间胰岛素 - 葡萄糖系统的轨迹,结果如下:(1)如果仅测量血浆葡萄糖G(t),可以估计血浆胰岛素I(t)和S(G),但不能估计S(I)。(2)如果额外采集血浆胰岛素I(t),可识别性会显著提高,从而可以估计多达四个模型参数,包括S(I)。(3)如果应用受控的外部胰岛素剂量,第一种情况的状况可以得到改善。然后,仅通过测量血浆葡萄糖G(t)就可以大致识别胰岛素子系统的参数。