无迹卡尔曼滤波器通过葡萄糖测量来估计血浆胰岛素。

The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.

作者信息

Eberle Claudia, Ament Christoph

机构信息

Department of Medicine, University of California-San Diego UCSC, San Diego, CA, USA.

出版信息

Biosystems. 2011 Jan;103(1):67-72. doi: 10.1016/j.biosystems.2010.09.012. Epub 2010 Oct 8.

Abstract

Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.

摘要

实时了解葡萄糖和胰岛素内稳态之间的同步相互作用对于临床治疗以及研究问题都非常重要。到目前为止,只能实时测量血浆葡萄糖浓度。为了支持例如糖尿病的安全、有效和快速治疗,实时估计血浆胰岛素将具有很大价值。本文提出了一种使用无迹卡尔曼滤波器的新方法,该方法可提供当前血浆胰岛素浓度的估计值,它基于血浆葡萄糖的测量以及葡萄糖胰岛素内稳态的伯格曼最小模型进行操作。我们可以证明在这种情况下获得了过程可观测性。因此,成功的估计器设计是可能的。由于该过程是非线性的,我们必须考虑非正态分布的估计值。与扩展卡尔曼滤波器(EKF)、单纯形无迹卡尔曼滤波器(UKF)和粒子滤波器(PF)等其他估计器方法相比,对称无迹卡尔曼滤波器(UKF)的性能最佳。对称UKF算法应用于血浆胰岛素估计。与使用胰岛素子系统模型的直接(开环)估计相比,它显示出更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索