Instituto de Fisiologia Celular-Neurociencias, Universidad Nacional Autonoma de México (UNAM), México City, DF Mexico 04510.
Learn Mem. 2011 Nov 18;18(12):764-73. doi: 10.1101/lm.023432.111. Print 2011 Dec.
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.
目前尚无假说可以解释直接和间接基底神经节(BG)通路如何相互作用,以在运动程序的学习中达到平衡。这两条通路都汇聚于苍白球网状部(SNr),并将纹状体处理的结果传递出去。不幸的是,调节纹状体苍白球(直接通路)突触可塑性的机制尚不清楚。在这里,我们使用电生理技术来描述多巴胺 D1 受体介导的纹状体苍白球突触易化作用,同时描述了一种与谷氨酸能输入(可能来自丘脑底核(STN)(间接通路)相互作用的、纹状体苍白球依赖的长时程突触抑制(LTD)。结果表明,当 NMDA 受体失活时,纹状体传入神经会表现出 D1 受体介导的突触传递易化,当 NMDA 受体激活时,这种现象会转变为纹状体苍白球依赖的 LTD。这种相互作用使得 SNr 神经元成为符合检测开关端口:当 NMDA 受体失活时,它们导致多巴胺依赖的直接通路输出增强,理论上促进运动。当 NMDA 受体激活时,相同的突触会发生 LTD,从而减少运动。我们提出,SNr 神经元作为逻辑门,调节运动系统,在两条 BG 通路之间建立平衡,使系统能够为运动学习和姿势支持选择合适的协同作用。