Université Bordeaux and Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
J Neurosci. 2013 Sep 4;33(36):14331-41. doi: 10.1523/JNEUROSCI.1681-13.2013.
Impairments of synaptic plasticity are a hallmark of several neurological disorders, including Parkinson's disease (PD) which results from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor thalamus. Here, we show that long-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether, our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to PD-related motor dysfunctions.
突触可塑性的损伤是几种神经退行性疾病的标志,包括帕金森病(PD),其源于黑质致密部多巴胺能神经元的进行性丧失,导致基底节(BG)网络内的异常活动和病理性运动症状。事实上,皮质纹状体谷氨酸能突触(BG 的门户)的可塑性破坏与 PD 相关运动障碍的发生相关,因此被认为是调节 BG 回路中信息流和运动功能的关键神经基质。然而,一个关键问题是,在 BG 内的其他谷氨酸能连接中是否会发生类似的可塑性损伤,这也会影响网络对运动丘脑的抑制作用。在这里,我们表明,调节网络主要输出神经元黑质神经元活动模式的丘脑底核-黑质谷氨酸能突触(STN-SNr)的长期可塑性也受到实验性帕金森病的影响。我们使用急性大鼠脑切片中的全细胞膜片钳技术,描述了一种支持通过 NMDA 受体和 D1/5 多巴胺受体介导的突触 AMPA 谷氨酸受体内吞作用的活动依赖性 STN-SNr 突触长时程抑郁的分子途径。我们还表明,这种可塑性特性在 PD 的实验大鼠模型中丧失,但可以通过多巴胺 D1/5 受体的募集来恢复。总之,我们的研究结果表明,丘脑底核-黑质可塑性的病理性损伤可能增强 BG 的输出,从而导致 PD 相关的运动功能障碍。