Department of Pediatrics, University of Colorado Denver, Campus Box B119, Aurora, CO 80045, USA.
Contemp Clin Trials. 2012 Mar;33(2):378-85. doi: 10.1016/j.cct.2011.11.009. Epub 2011 Nov 12.
Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome.
辍学在纵向临床试验中很常见,当辍学的概率即使在对可用数据进行条件处理后仍取决于未观察到的结果时,就被认为是随机缺失的,因此是非可忽略的。为了解决这个问题,可以使用混合模型来解释纵向结果和辍学之间的关系。我们提出了一种自然样条变系数混合模型(NSV),这是参数条件线性模型(CLM)的直接扩展。我们假设结果在连续辍学分布的条件下遵循变系数模型。使用自然三次 B 样条允许回归系数半参数地依赖于辍学,因此推断更稳健。此外,这种方法在计算上是稳定的,相对简单。我们进行模拟研究,以评估性能并在纵向轨迹为线性且所有个体的辍学时间都被观察到的情况下比较方法。在满足和违反模型假设的情况下评估性能。此外,我们使用 HIV/AIDS 临床试验中的可能非可忽略辍学,将 NSV 与 CLM 和标准随机效应模型进行比较。模拟研究表明,当辍学对结果的依赖性是非线性时,NSV 比 CLM 有所改进。