Department of Cellular & Molecular Pharmacology, University of California, San Francisco, California 94158-2517, USA.
Mol Cell Proteomics. 2012 Feb;11(2):M111.010132. doi: 10.1074/mcp.M111.010132. Epub 2011 Nov 17.
CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may serve to engage each E2-E3 complex. Collectively, our findings underscore the interplay between protein phosphorylation and ubiquitination in ERAD and, to our knowledge, provide the very first example of gp78 substrate recognition via protein phosphorylation.
CYP3A4 是一种完整的内质网 (ER) 锚定蛋白,是人类肝脏细胞色素 P450 酶的主要成分,负责处理超过 50%的临床相关药物。其蛋白周转率的改变会影响药物代谢、药物相互作用和化疗药物的生物利用度。这种 CYP3A4 周转率是通过经典的 ER 相关降解 (ERAD) 过程发生的,涉及 UBC7/gp78 和 UbcH5a/CHIP E2-E3 复合物对 26S 蛋白酶体靶向的泛素化。这些 E3 连接酶在 CYP3A4 ERAD 中依次协同作用,因为在培养的肝细胞中 RNA 干扰敲低每个 E3 连接酶都会导致功能活性酶的稳定。我们已经证明,UBC7/gp78 介导的 CYP3A4 泛素化需要蛋白激酶 (PK) A 和 PKC 的蛋白磷酸化,并确定了三个残基 (Ser-478、Thr-264 和 Ser-420),其磷酸化是细胞内 CYP3A4 ERAD 所必需的。我们在此证明,在这些残基中,Ser-478 在 UBC7/gp78 介导的 CYP3A4 泛素化中起着关键作用,其突变为磷酸模拟 Asp 残基会加速和增强泛素化,但突变为 Ala 残基会减弱。有趣的是,CYP3A5 是一种多态性表达的人类肝脏 CYP3A4 同工酶 (含有 Asp-478),比 HepG2 细胞中的 CYP3A4 更容易被泛素化但不易降解。这表明,虽然 Ser-478 磷酸化对于 UBC7/gp78 介导的 CYP3A4 泛素化是必需的,但不足以进行其 ERAD。此外,我们现在报告,CYP3A4 蛋白在 Ser-478、Thr-264 和 Ser-420 以外的位点被 PKA 和/或 PKC 磷酸化也会增强 UbcH5a/CHIP 介导的泛素化。通过蛋白质组学分析,我们确定了 (i) 12 个可能参与 CHIP-CYP3A4 相互作用的其他磷酸化位点,以及 (ii) 8 个先前未识别的 CYP3A4 泛素化位点,这些位点位于空间上相关的 Asp/Glu 和可磷酸化的 Ser/Thr 残基簇内,可能用于与每个 E2-E3 复合物结合。总的来说,我们的研究结果强调了蛋白磷酸化和泛素化在 ERAD 中的相互作用,并且据我们所知,提供了 gp78 通过蛋白磷酸化进行底物识别的第一个例子。