Suppr超能文献

腺苷酸环化酶 1 在视传出投射图发育中的作用。

Role of adenylate cyclase 1 in retinofugal map development.

机构信息

Department of Neurobiology, Yale University, New Haven, Connecticut 06510, USA.

出版信息

J Comp Neurol. 2012 May 1;520(7):1562-83. doi: 10.1002/cne.23000.

Abstract

The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN.

摘要

感觉外围地形图的发育对腺苷酸环化酶 1(AC1)信号的破坏很敏感。AC1 以 Ca2+/钙调蛋白依赖的方式催化 cAMP 的产生,AC1 突变小鼠(AC1−/−)的视觉和躯体地形图紊乱。然而,AC1 在大脑中的广泛表达和 cAMP 信号的混杂性质挫败了确定 AC1 依赖性地形图发育的潜在机制的尝试。在哺乳动物视觉系统中,视网膜神经节细胞(RGC)投射到上丘(SC)和外侧膝状体核(LGN)的初始粗定位受分子线索的指导,随后这些粗定位投射的细化通过依赖于自发视网膜波的活性依赖过程发生。在这里,我们表明 AC1−/− 小鼠具有正常的视网膜波,但地图细化被破坏。我们证明 AC1 是密集和集中终止区出现所必需的,并且消除了单个视网膜传出树突的不准确靶向侧支。视网膜中 AC1 的条件缺失重现了地图缺陷,表明 AC1−/− 小鼠 SC 和背侧 LGN 中地图破坏的位置是突触前的。最后,缺乏 AC1 和破坏的视网膜波(AC1−/−;β2−/− 双 KO 小鼠)的小鼠的地图缺陷并不比仅缺乏β2−/−的小鼠更严重,但是在β2−/− 小鼠中,AC1 的缺失阻止了视网膜波恢复在出生后第二周。这些结果表明,RGC 轴突中的 AC1 介导了 SC 和背侧 LGN 中视网膜拓扑结构和眼特异性分离的发育。

相似文献

1
Role of adenylate cyclase 1 in retinofugal map development.
J Comp Neurol. 2012 May 1;520(7):1562-83. doi: 10.1002/cne.23000.
2
Development of single retinofugal axon arbors in normal and β2 knock-out mice.
J Neurosci. 2011 Mar 2;31(9):3384-99. doi: 10.1523/JNEUROSCI.4899-10.2011.
3
Adenylate cyclase 1 as a key actor in the refinement of retinal projection maps.
J Neurosci. 2003 Mar 15;23(6):2228-38. doi: 10.1523/JNEUROSCI.23-06-02228.2003.
4
Spontaneous patterned retinal activity and the refinement of retinal projections.
Prog Neurobiol. 2005 Jul;76(4):213-35. doi: 10.1016/j.pneurobio.2005.09.002. Epub 2005 Nov 8.
5
Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
Vis Neurosci. 2011 Mar;28(2):175-81. doi: 10.1017/S0952523810000386. Epub 2011 Feb 16.
8
Effect of Bcl-2 overexpression on establishment of ipsilateral retinocollicular projection in mice.
Neuroscience. 2002;110(4):667-73. doi: 10.1016/s0306-4522(01)00610-8.
9
Role of the calcium modulated cyclases in the development of the retinal projections.
Eur J Neurosci. 2006 Dec;24(12):3401-14. doi: 10.1111/j.1460-9568.2006.05227.x.

引用本文的文献

2
Ca-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders.
Front Pharmacol. 2022 Sep 16;13:949384. doi: 10.3389/fphar.2022.949384. eCollection 2022.
3
Retinal Axon Interplay for Binocular Mapping.
Front Neural Circuits. 2021 Jun 4;15:679440. doi: 10.3389/fncir.2021.679440. eCollection 2021.
4
Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment.
Curr Top Dev Biol. 2021;142:283-317. doi: 10.1016/bs.ctdb.2020.10.004. Epub 2020 Nov 16.
5
Developmental distribution of primary cilia in the retinofugal visual pathway.
J Comp Neurol. 2021 May 1;529(7):1442-1455. doi: 10.1002/cne.25029. Epub 2020 Sep 28.
6
Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex.
Neuron. 2020 May 20;106(4):649-661.e4. doi: 10.1016/j.neuron.2020.02.030. Epub 2020 Mar 19.
7
Visual Cortex Gains Independence from Peripheral Drive before Eye Opening.
Neuron. 2019 Nov 20;104(4):711-723.e3. doi: 10.1016/j.neuron.2019.08.015. Epub 2019 Sep 24.
8
Rorβ regulates selective axon-target innervation in the mammalian midbrain.
Development. 2019 Jul 22;146(14):dev171926. doi: 10.1242/dev.171926.
9
Molecular guidance cues in the development of visual pathway.
Protein Cell. 2018 Nov;9(11):909-929. doi: 10.1007/s13238-017-0490-7. Epub 2017 Nov 27.
10
Organization of the dorsal lateral geniculate nucleus in the mouse.
Vis Neurosci. 2017 Jan;34:E008. doi: 10.1017/S0952523817000062.

本文引用的文献

1
An instructive role for patterned spontaneous retinal activity in mouse visual map development.
Neuron. 2011 Jun 23;70(6):1115-27. doi: 10.1016/j.neuron.2011.04.028.
2
Wiring and rewiring of the retinogeniculate synapse.
Curr Opin Neurobiol. 2011 Apr;21(2):228-37. doi: 10.1016/j.conb.2011.02.007.
3
Development of single retinofugal axon arbors in normal and β2 knock-out mice.
J Neurosci. 2011 Mar 2;31(9):3384-99. doi: 10.1523/JNEUROSCI.4899-10.2011.
4
Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance.
J Neurosci. 2011 Jan 26;31(4):1489-99. doi: 10.1523/JNEUROSCI.4134-09.2011.
5
Presynaptic activity and CaMKII modulate retrograde semaphorin signaling and synaptic refinement.
Neuron. 2010 Oct 6;68(1):32-44. doi: 10.1016/j.neuron.2010.09.005.
9
Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
Neuron. 2009 Apr 30;62(2):230-41. doi: 10.1016/j.neuron.2009.03.015.
10
Mechanisms underlying development of visual maps and receptive fields.
Annu Rev Neurosci. 2008;31:479-509. doi: 10.1146/annurev.neuro.31.060407.125533.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验