The Methodology Center, The Pennsylvania State University, 204 East Calder Way, Suite 400, State College, PA 16801, USA.
Psychol Methods. 2012 Mar;17(1):61-77. doi: 10.1037/a0025814. Epub 2011 Nov 21.
Understanding temporal change in human behavior and psychological processes is a central issue in the behavioral sciences. With technological advances, intensive longitudinal data (ILD) are increasingly generated by studies of human behavior that repeatedly administer assessments over time. ILD offer unique opportunities to describe temporal behavioral changes in detail and identify related environmental and psychosocial antecedents and consequences. Traditional analytical approaches impose strong parametric assumptions about the nature of change in the relationship between time-varying covariates and outcomes of interest. This article introduces time-varying effect models (TVEMs) that explicitly model changes in the association between ILD covariates and ILD outcomes over time in a flexible manner. In this article, we describe unique research questions that the TVEM addresses, outline the model-estimation procedure, share a SAS macro for implementing the model, demonstrate model utility with a simulated example, and illustrate model applications in ILD collected as part of a smoking-cessation study to explore the relationship between smoking urges and self-efficacy during the course of the pre- and postcessation period.
理解人类行为和心理过程的时间变化是行为科学的一个核心问题。随着技术的进步,密集的纵向数据(ILD)越来越多地由人类行为研究产生,这些研究随着时间的推移反复进行评估。ILD 提供了独特的机会,可以详细描述时间上的行为变化,并确定相关的环境和社会心理因素的前因和后果。传统的分析方法对时变协变量和感兴趣的结果之间关系变化的性质施加了严格的参数假设。本文介绍了时变效应模型(TVEM),它以灵活的方式明确地对ILD 协变量和ILD 结果之间的关联随时间的变化进行建模。在本文中,我们描述了 TVEM 所解决的独特研究问题,概述了模型估计过程,分享了一个用于实现该模型的 SAS 宏,用一个模拟示例演示了模型的实用性,并说明了该模型在作为戒烟研究一部分收集的ILD 中的应用,以探讨在戒烟前和戒烟期间吸烟冲动和自我效能之间的关系。