Trail Jessica B, Collins Linda M, Rivera Daniel E, Li Runze, Piper Megan E, Baker Timothy B
Methodology Center.
Control Systems Engineering Laboratory.
Psychol Methods. 2014 Jun;19(2):175-87. doi: 10.1037/a0034035. Epub 2013 Sep 30.
Efficient new technology has made it straightforward for behavioral scientists to collect anywhere from several dozen to several thousand dense, repeated measurements on one or more time-varying variables. These intensive longitudinal data (ILD) are ideal for examining complex change over time but present new challenges that illustrate the need for more advanced analytic methods. For example, in ILD the temporal spacing of observations may be irregular, and individuals may be sampled at different times. Also, it is important to assess both how the outcome changes over time and the variation between participants' time-varying processes to make inferences about a particular intervention's effectiveness within the population of interest. The methods presented in this article integrate 2 innovative ILD analytic techniques: functional data analysis and dynamical systems modeling. An empirical application is presented using data from a smoking cessation clinical trial. Study participants provided 42 daily assessments of pre-quit and post-quit withdrawal symptoms. Regression splines were used to approximate smooth functions of craving and negative affect and to estimate the variables' derivatives for each participant. We then modeled the dynamics of nicotine craving using standard input-output dynamical systems models. These models provide a more detailed characterization of the post-quit craving process than do traditional longitudinal models, including information regarding the type, magnitude, and speed of the response to an input. The results, in conjunction with standard engineering control theory techniques, could potentially be used by tobacco researchers to develop a more effective smoking intervention.
高效的新技术使行为科学家能够轻松地对一个或多个随时间变化的变量进行从几十次到几千次密集、重复的测量。这些密集纵向数据(ILD)非常适合用于研究随时间的复杂变化,但也带来了新的挑战,这表明需要更先进的分析方法。例如,在ILD中,观测的时间间隔可能不规则,而且个体可能在不同时间进行采样。此外,评估结果如何随时间变化以及参与者随时间变化的过程之间的差异,对于推断特定干预措施在目标人群中的有效性很重要。本文介绍的方法整合了两种创新的ILD分析技术:功能数据分析和动态系统建模。使用戒烟临床试验的数据给出了一个实证应用。研究参与者对戒烟前和戒烟后的戒断症状进行了42次每日评估。回归样条用于近似渴望和负面影响的平滑函数,并估计每个参与者变量的导数。然后,我们使用标准的输入-输出动态系统模型对尼古丁渴望的动态进行建模。与传统的纵向模型相比,这些模型对戒烟后的渴望过程提供了更详细的描述,包括有关对输入的反应类型、幅度和速度的信息。结合标准工程控制理论技术,这些结果可能会被烟草研究人员用于开发更有效的戒烟干预措施。