Suppr超能文献

尿液 α-GST 和 π-GST 预测已确诊急性肾损伤患者的透析需求或院内死亡。

Urinary α-GST and π-GST for prediction of dialysis requirement or in-hospital death in established acute kidney injury.

机构信息

Kidney and Dialysis Research Laboratory, St. Elizabeth's Medical Center, Boston, MA, USA.

出版信息

Biomarkers. 2011 Dec;16(8):709-17. doi: 10.3109/1354750X.2011.631219.

Abstract

CONTEXT

Urinary α-glutathione S-transferase (α-GST) and π-glutathione S-transferase (π-GST) are promising proximal and distal tubular leakage markers for early detection of acute kidney injury (AKI).

OBJECTIVE

To examine the performance of these markers for predicting the composite of dialysis requirement or in-hospital death in patients with an established diagnosis of AKI.

MATERIALS AND METHODS

Prospective cohort study of 245 adults with AKI. A single urinary α-GST and π-GST measurement was obtained at time of nephrology consultation.

RESULTS

Overall, urinary π-GST performed better than α-GST for prediction of dialysis requirement (AUC 0.59 vs. 0.56), and the composite outcome (AUC 0.58 vs. 0.56). In subgroup analyses, π-GST displayed better discrimination for prediction of dialysis requirement in patients with baseline eGFR <60 mL/min/1.73 m(2) (AUC 0.61) and oliguria (AUC 0.72). Similarly, α-GST performed better in patients with stage-1 (AUC 0.66) and stage-2 AKI (AUC 0.80).

CONCLUSIONS

In patients with an established diagnosis of AKI, a single urinary π-GST measurement performed better than α-GST at predicting dialysis requirement or death, but neither marker had good prognostic discrimination.

摘要

背景

尿α-谷胱甘肽 S-转移酶(α-GST)和π-谷胱甘肽 S-转移酶(π-GST)是有前途的近端和远端肾小管渗漏标志物,可用于早期检测急性肾损伤(AKI)。

目的

检验这些标志物预测已确诊 AKI 患者发生透析需求或院内死亡复合终点的表现。

材料和方法

前瞻性队列研究纳入 245 例 AKI 成人患者。在肾脏病咨询时获取单次尿α-GST 和 π-GST 测量值。

结果

总体而言,尿 π-GST 在预测透析需求方面优于 α-GST(AUC 0.59 比 0.56),在预测复合结局方面(AUC 0.58 比 0.56)同样如此。在亚组分析中,在基线 eGFR<60 mL/min/1.73 m(2)(AUC 0.61)和少尿(AUC 0.72)患者中,π-GST 对预测透析需求的区分能力更好。同样,α-GST 在 AKI 1 期(AUC 0.66)和 2 期(AUC 0.80)患者中表现更好。

结论

在已确诊 AKI 的患者中,单次尿 π-GST 测量值在预测透析需求或死亡方面优于 α-GST,但两者的预后区分能力都不佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验