Neal Rebekah A, Tholpady Sunil S, Foley Patricia L, Swami Nathan, Ogle Roy C, Botchwey Edward A
Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908.
J Biomed Mater Res A. 2012 Feb;100(2):406-23. doi: 10.1002/jbm.a.33204. Epub 2011 Nov 21.
Peripheral nerve transection occurs commonly in traumatic injury, causing deficits distal to the injury site. Conduits for repair currently on the market are hollow tubes; however, they often fail due to slow regeneration over long gaps. To facilitate increased regeneration speed and functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in regeneration. To that end, laminin and laminin-polycaprolactone (PCL) blend nanofibers were fabricated to mimic peripheral nerve basement membrane. In vitro assays established 10% (wt) laminin content is sufficient to retain neurite-promoting effects of laminin. In addition, modified collector plate design to introduce an insulating gap enabled the fabrication of aligned nanofibers. The effects of laminin content and fiber orientation were evaluated in rat tibial nerve defect model. The lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment to assess changes in motor and sensory recovery. Retrograde nerve conduction speed at 6 weeks was significantly faster in animals receiving aligned nanofiber conduits than in those receiving random nanofiber conduits. Animals receiving nanofiber-filled conduits showed some conduction in both anterograde and retrograde directions, whereas in animals receiving hollow conduits, no impulse conduction was detected. Aligned PCL nanofibers significantly improved motor function; aligned laminin blend nanofibers yielded the best sensory function recovery. In both cases, nanofiber-filled conduits resulted in better functional recovery than hollow conduits. These studies provide a firm foundation for the use of natural-synthetic blend electrospun nanofibers to enhance existing hollow nerve guidance conduits.
周围神经横断伤在创伤性损伤中很常见,会导致损伤部位远端出现功能障碍。目前市场上用于修复的导管是空心管;然而,由于在长间隙上再生缓慢,它们常常失效。为了加快再生速度和促进功能恢复,理想的导管应提供与生物化学相关的信号和物理引导线索,从而在再生过程中发挥积极作用。为此,制备了层粘连蛋白和层粘连蛋白-聚己内酯(PCL)共混纳米纤维,以模拟周围神经基底膜。体外试验表明,10%(重量)的层粘连蛋白含量足以保留层粘连蛋白的促神经突生长作用。此外,改进的收集板设计引入了一个绝缘间隙,使得能够制备排列整齐的纳米纤维。在大鼠胫神经缺损模型中评估了层粘连蛋白含量和纤维取向的影响。用不同层粘连蛋白含量和排列方式的纳米纤维网填充导管内腔,以评估运动和感觉恢复的变化。在6周时,接受排列整齐的纳米纤维导管的动物的逆行神经传导速度明显快于接受随机纳米纤维导管的动物。接受纳米纤维填充导管的动物在顺行和逆行方向上均有一定的传导,而接受空心导管的动物未检测到冲动传导。排列整齐的PCL纳米纤维显著改善了运动功能;排列整齐的层粘连蛋白共混纳米纤维产生了最佳的感觉功能恢复。在这两种情况下,纳米纤维填充导管比空心导管产生了更好的功能恢复。这些研究为使用天然-合成共混电纺纳米纤维增强现有的空心神经引导导管奠定了坚实的基础。