Department of Physiology and ‡Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701, South Korea.
J Proteome Res. 2012 Feb 3;11(2):1018-26. doi: 10.1021/pr200770v. Epub 2011 Dec 7.
The voltage-gated K(+) channel Kv2.1 is expressed as a highly phosphorylated protein in most central neurons, where it plays a key role in regulating neuronal membrane excitability. Previous studies have shown that Kv2.1 channel activity is upregulated by Src-mediated phosphorylation through an unknown mechanism. However, a systematic analysis of the molecular mechanism of Kv2.1 channel phosphorylation by Src is lacking. Here, we show that tyrosine phosphorylation by Src plays a fundamental role in regulating Kv2.1-mediated K(+) current enhancement. We found that the level of expression of the Kv2.1 protein is increased by Src kinase. Using mass spectrometric proteomic techniques, we identified two novel phosphotyrosine sites, Y686 and Y810, in the cytoplasmic domains of Kv2.1. We found that Src-dependent phosphorylation at these sites affects Kv2.1 through distinct regulatory mechanisms. Whereas phosphorylation at Y686 regulates Kv2.1 activity similarly to the known site Y124, phosphorylation at Y810 plays a significant role in regulating the intracellular trafficking of Kv2.1 channels. Our results show that these two novel tyrosine phosphorylation sites of Kv2.1 are crucial to regulating diverse aspects of Kv2.1 channel function and provide novel insights into molecular mechanisms for the regulation of Src-dependent modulation of Kv2.1 channels.
电压门控钾离子通道 Kv2.1 在大多数中枢神经元中表达为高度磷酸化的蛋白质,在调节神经元膜兴奋性方面发挥着关键作用。先前的研究表明,Kv2.1 通道活性通过Src 介导的磷酸化作用上调,但其具体机制尚不清楚。然而,Src 对 Kv2.1 通道磷酸化的分子机制还缺乏系统的分析。在这里,我们发现 Src 的酪氨酸磷酸化在调节 Kv2.1 介导的钾电流增强中起着根本作用。我们发现 Src 激酶可增加 Kv2.1 蛋白的表达水平。通过质谱蛋白质组学技术,我们在 Kv2.1 的细胞质结构域中鉴定出两个新的磷酸酪氨酸位点 Y686 和 Y810。我们发现,Src 依赖性磷酸化作用对这些位点的影响通过不同的调节机制作用于 Kv2.1。虽然 Y686 位点的磷酸化作用与已知的 Y124 位点相似,可调节 Kv2.1 的活性,但 Y810 位点的磷酸化在调节 Kv2.1 通道的细胞内运输方面起着重要作用。我们的结果表明,Kv2.1 的这两个新的酪氨酸磷酸化位点对于调节 Kv2.1 通道功能的不同方面至关重要,并为 Src 依赖性调节 Kv2.1 通道的分子机制提供了新的见解。