Department of Biological Sciences, Seoul National University and the Brain Research Center for the 21 Century Frontier Program in Neuroscience, Seoul 151-742, Korea.
Exp Neurobiol. 2011 Mar;20(1):18-28. doi: 10.5607/en.2011.20.1.18. Epub 2011 Mar 31.
As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and orchestrates numerous subsidiary local clocks in other regions of the brain and peripheral tissues. Regardless of their locations, these circadian clocks are cell-autonomous and self-sustainable, implicating rhythmic oscillations in a variety of biochemical and metabolic processes. A group of core clock genes provides interlocking molecular feedback loops that drive the circadian rhythm even at the single-cell level. In addition to the core transcription/translation feedback loops, post-translational modifications also contribute to the fine regulation of molecular circadian clocks. In this article, we briefly review the molecular mechanisms and post-translational modifications of mammalian circadian clock regulation. We also discuss the organization of and communication between central and peripheral circadian oscillators of the mammalian circadian clock.
由于地球的自转,几乎所有生物体在 24 小时周期内都会经历昼夜循环。为了适应和同步生物节律与外部日常周期,生物体进化出了内部计时系统。在哺乳动物中,位于下丘脑前视交叉上核(SCN)的主生物钟起搏器产生昼夜节律,并协调大脑和外周组织其他区域的许多附属局部时钟。无论其位置如何,这些生物钟都是细胞自主和自我维持的,暗示着各种生化和代谢过程中的节律性波动。一组核心时钟基因提供了互锁的分子反馈环,即使在单细胞水平上也能驱动昼夜节律。除了核心转录/翻译反馈环外,翻译后修饰也有助于分子生物钟的精细调节。本文简要回顾了哺乳动物生物钟调节的分子机制和翻译后修饰。我们还讨论了哺乳动物生物钟的中枢和外周生物钟振荡器的组织和通信。