Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China.
J Biomed Opt. 2011 Nov;16(11):116008. doi: 10.1117/1.3651772.
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
激光散斑成像(LSI)是一种非侵入式的全场光学成像技术,它通过 CCD 相机捕获的原始激光散斑图像,无需扫描即可生成组织的二维血流图。我们提出了一种用于激光散斑成像实时处理的硬件友好型算法。该算法是专门为现场可编程门阵列(FPGA)中的 LSI 处理而开发和优化的。基于该算法,我们在 FPGA 中设计了用于实时 LSI 的专用硬件处理器。流水线处理方案和并行计算架构被引入到这个 LSI 硬件处理器的设计中。当 LSI 硬件处理器在运行频率高达 130MHz 的 FPGA 中实现时,每秒最多可以处理 85 张分辨率为 640×480 像素的原始图像。同时,我们还通过将 CCD 控制器、存储器控制器、LSI 硬件处理器和 LCD 显示控制器集成到单个 FPGA 芯片中,提出了一种用于 LSI 处理的片上系统(SOC)解决方案。这个 SOC 解决方案也可以用于制作用于 LSI 处理的专用集成电路。